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Abstract

Deep neural networks exhibit vulnerability to
word-level adversarial attacks in natural lan-
guage processing. Most of these attack meth-
ods adopt synonymous substitutions to perturb
original samples for crafting adversarial exam-
ples while attempting to maintain semantic con-
sistency with the originals. Some of them claim
that they could achieve over 90% attack success
rate, thereby raising serious safety concerns.
However, our investigation reveals that many
purportedly successful adversarial examples
are actually invalid due to significant changes in
semantic meanings compared to their originals.
Even when equipped with semantic constraints
such as BERTScore, existing attack methods
can generate up to 87.9% invalid adversarial ex-
amples. Building on this insight, we first curate
a 13K dataset for adversarial validity evaluation
with the help of GPT-4. Then, an open-source
large language model is fine-tuned to offer an
interpretable validity score for assessing the se-
mantic consistency between original and adver-
sarial examples. Finally, this validity score can
serve as a guide for existing adversarial attack
methods to generate valid adversarial examples.
Comprehensive experiments demonstrate the
effectiveness of our method in evaluating and
refining the quality of adversarial examples.

1 Introduction

Despite the success of Deep Neural Networks
(DNNs) in various Natural Language Processing
(NLP) tasks such as Text Classification, there is a
line of research showing the vulnerability of DNNs
to adversarial attacks (Alzantot et al., 2018; Ren
et al., 2019; Li et al., 2020; Jin et al., 2020). These
attacks involve introducing human imperceptible
perturbations to original sentences, known as adver-
sarial examples, in order to mislead victim models
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Figure 1: Demonstration of valid and invalid adversarial
examples. A word-level attack method perturbs orig-
inal sample xori to generate two different adversarial
ones: xvalid and xinvalid. xvalid successfully retains its
semantic meaning with xori, representing a valid adver-
sarial example. However, xinvalid has a flip in semantic
meaning, which fails to preserve semantic consistency
to xori, representing an invalid adversarial example.
Our AVLLM can offer scores and explanations of the va-
lidity for those generated adversarial examples by CoT
reasoning. Then, validity scores can be used to help
judge the success of adversarial attacks.

into making incorrect predictions. According to
the definition of a successful adversarial attack, the
generated adversarial example must satisfy two re-
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quirements. (1) Misclassification: victim model’s
prediction should be changed. (2) Semantic Con-
sistency: the semantic meaning should remain suf-
ficiently close to its original sentence.

The most effective adversarial attack against text
classification DNNs is word-level attack, which
substitutes a few words to generate perturbed adver-
sarial examples, e.g., synonym substitutions (Garg
and Ramakrishnan, 2020; Li et al., 2020, 2021;
Ren et al., 2019; Alzantot et al., 2018; Yoo and Qi,
2021a). However, according to investigations in
this paper, we find that these attack methods of-
ten fail to guarantee high semantic consistency and
may even result in semantic flipping. As shown
in Figure 1, two adversarial examples xvalid and
xinvalid are generated over original sample xori with
synonymous substitutions. Both of them have al-
tered victim model’s predictions from to ,
meeting the first requirement, i.e., Misclassifica-
tion. For the second requirement, i.e., Semantic
Consistency, xvalid successfully retains its semantic
meaning to xori ( → ), while xinvalid’s mean-
ing significantly changed ( → )1, leaving it
an invalid adversarial example and a failed attack.

Numerous sentence embedding tools, seman-
tic metrics and constraints, like grammar check-
ers, WordNet (Pedersen and Kolhatkar, 2009),
USE (Cer et al., 2018), BERTScore (Zhang et al.,
2019) and so on have been applied to adversarial
attacks, in order to help word-level attack meth-
ods satisfy the semantic consistency requirement.
However, as illustrated in Table 1, even equipped
with constraints and having good performance in
semantic metrics (e.g., in terms of BERTScore, all
attack methods are ≥ 94%), these attack methods
can still generate massive invalid adversarial ex-
amples (e.g., the real ASR (ASRh) of BAE (Garg
and Ramakrishnan, 2020) is only 11.7% instead
of so-called 99.6%) according to the evaluations
of human. This observation not only reveals limi-
tations of current adversarial evaluations, but also
indicates that existing constraints are not sufficient
to help generate valid adversarial examples.

At the same time, we find that the validity results
offered by GPT-4 (Achiam et al., 2023) (ASRg) are
highly consistent with human evaluations, which
suggests the impressive ability of large language
models (LLMs) in semantic understanding and
evaluation. Based on this finding, we propose a

1That means the ground truth label of xinvalid is actually
, and the victim model made a correct prediction of it.

Attack Method ASR B.S. Sim. USE ASRh ASRg

A2T (Yoo and Qi, 2021b) 80.1 95.7 95.6 86.1 45.2↓34.9 39.7↓40.4
BAE (Garg and Ramakrishnan, 2020) 99.6 95.1 94.4 86.9 11.7↓87.9 13.3↓88.3
PWWS (Ren et al., 2019) 87.6 94.7 95.5 86.3 29.0↓58.6 29.1↓58.5
Textfooler (Jin et al., 2020) 98.8 96.0 95.2 86.5 17.8↓81.0 20.0↓78.8
F-alzantot (Jia et al., 2019) 94.3 95.3 95.4 85.8 28.8↓65.5 35.3↓59.0

Table 1: Pilot study for evaluating the validity of ad-
versarial examples. ASR denotes attack success rate.
Metrics like BERTScore (B.S.), SimCSE (Sim.), and
USE assess similarity between original and adversarial
examples. ASRh and ASRg are validity rates of ad-
versarial examples judged by human and GPT-4. The
details of these metrics are introduced in Sec. 4.1.

novel method named as Adversarial Validity eval-
uation with Large Language Models (AVLLM) to
address the issue of invalid adversarial examples.
Specifically, we first collect a 13K word-level ad-
versarial validity evaluation dataset with rich anno-
tations by GPT-4. Then, with recent advancements
of open-source LLMs, we fine-tune a lightweight
LLM to provide a validity score for assessing the se-
mantic consistency between original and adversar-
ial examples. Also, Chain-of-Thought (Wei et al.,
2022) (CoT) is leveraged to enable our AVLLM of-
fer detailed explanations of semantic differences,
making the validity score interpretable. In addi-
tion, the lightness of AVLLM makes it possible
to be integrated into most existing adversarial at-
tack methods, serving as a plug-and-play module
to help generate valid adversarial examples. Ex-
tensive experiments across various datasets demon-
strate AVLLM’s superior performance in evaluating
and refining the quality of adversarial examples.

In conclusion, our contributions are three-fold:

1) Our investigations reveal that many popular ad-
versarial attack methods have serious issues in
generating invalid adversarial examples, and
existing semantic constraints or sentence em-
bedding tools are not sufficient to help with it.

2) A 13K dataset is curated by leveraging the
impressive semantic understanding ability of
LLMs for word-level adversarial validity evalu-
ation, which can facilitate the research of textual
adversarial attack.

3) We propose AVLLM, as a interpretable metric
for adversarial validity evaluations, and as a
plug-and-play module to help generate valid
adversarial examples. Extensive experiments
show its effectiveness in evaluating and refining
the quality of adversarial examples.

4903



Human-made

Prompt You are a helpful assistant to analysis and rate the semantic consistency score between

two text samples: an original text and an adversarial text with changes like synonym
substitutions and minor grammatical alterations.

Evaluation Criteria: Semantic Consistency Score (1-5) - This measures how
closely the adversarial text aligns with the original in terms of meaning. Changes may include
synonym substitutions and minor grammatical errors, highlighted with ‘[[’ and ‘]]’. The score

should reflect the degree to which the altered text preserves the original's meaning, where 5
signifies identical meaning and 1 indicates a completely different meaning.

 "Original": "the cast has a high time, but de broca has
[[little]] enthusiasm for such antique pulp."

 "Adversarial": "the cast has a high time, but de broca
has [[much]] enthusiasm for such antique pulp."

"Analysis": "The change from "little" to "much"
enthusiasm significantly alters the sentiment about de
Broca's attitude towards the "antique pulp". This shifts
the meaning from negative to positive."

"Semantic Consistency Score": 1
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·
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(b) AVLLM as a validity metric.
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≥threshold Filtered adv.

(c) AVLLM as a plug-and-play patch.
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Attacker Adv. AVLLM

Victim

(a) Pipeline of AVLLM.

Figure 2: The framework of AVLLM. (a) We collect a dataset that comprises 13K word-level adversarial examples
across a various of attack methods and datasets. Then, GPT-4 is instructed as a semantic evaluator to provide scores
and analysis for the dataset. Finally, TinyLlama (Zhang et al., 2024) is selected as a lightweight LLM to fine-tune
on this dataset, resulting in our AVLLM. (b) To assess the validity of generated adversarial examples and revise the
existing benchmark, AVLLM is serving as a adversarial validity metric. (c) To guide the search and generation of
valid adversarial examples, AVLLM is integrated into the adversarial attack method.

2 Related Works

Adversarial Attack According to the perturba-
tion grains, adversarial attacks can be categorized
into three levels: character-level, word-level, and
sentence-level. Character-level attacks often utilize
spelling errors to mislead victim models (Gao et al.,
2018; Eger et al., 2019; Li et al., 2019). Sentence-
level attacks often use generative adversarial net-
works or text paraphrase technologies to directly
generate adversarial examples (Iyyer et al., 2018;
Maheshwary et al., 2021; Lei et al., 2022). How-
ever, both character and sentence level attacks can
easily cause grammar errors and largely modify
the text structure, which make them challenging to
maintain the quality of adversarial examples. Most
recent research attempts to develop word-level at-
tacks which often use gradient information (Guo
et al., 2021; Yuan et al., 2021) or substitution strate-
gies (Alzantot et al., 2018; Garg and Ramakrishnan,
2020; Li et al., 2020; Ren et al., 2019). However,
our investigation reveals that word-level methods
can generate massive invalid adversarial examples
due to semantic consistency issue, which has not
been well discussed in previous works.

Adversarial Defense To defend against adver-
sarial attacks, various defense methods have been
proposed including data augmentation (Ng et al.,
2020; Si et al., 2021; Kober et al., 2021), adversar-
ial training (Wang and Bansal, 2018; Shafahi et al.,
2019; Zhu et al., 2020; ?), and reconstruction-based
methods (Jones et al., 2020; Xu et al., 2022; Wang

et al., 2023). There is also a line of research that fo-
cuses on detection of adversarial examples (Mosca
et al., 2022; Huber et al., 2022; Raina and Gales,
2022) Notably, the proposed AVLLM aims at eval-
uating the validity of adversarial examples and re-
fining their quality, instead of defending against
adversarial attacks.

Evaluation of Adversarial Examples Existing
word-level adversarial attack methods evaluate the
quality of their generated adversarial examples
by synonyms and semantic constraints, such as
(1) substitution limitations by NLTK (Bird and
Loper, 2004), WordNet (Pedersen and Kolhatkar,
2009) and counter-fitting (Mrkšić et al., 2016),
(2) sentence similarity scores by modification rate,
ROUGE (Lin, 2004) and BERTScore (Zhang et al.,
2019), (3) embedding distance by USE (Cer et al.,
2018) and SimCSE (Gao et al., 2021). However,
our investigation reveals that these automatic evalu-
ation metrics are not sufficient to reflect the seman-
tic consistency between original and adversarial
examples. Previous studies also conduct human
evaluations to assess the quality of adversarial ex-
amples (Alzantot et al., 2018; Jin et al., 2020) focus-
ing more on the grammar, fluency and readability
instead of semantic consistency which is our fo-
cus. A recent line of research attempts to evaluate
the semantic consistency by human judges (Morris
et al., 2020a; Herel et al., 2022; Dyrmishi et al.,
2023) which may introduce human bias and can
be considerably costly. In contrast to evaluation by
combinations of embedding distance and seman-
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tic metrics (Morris et al., 2020a; Chiang and Lee,
2023), we propose to leverage impressive semantic
understanding ability of LLMs to provide a inter-
pretable metric for the adversarial validity.

3 Method

3.1 Preliminary

Given a text classification dataset, each sample is a
pair of input text x ∈ X and its corresponding label
y ∈ Y , where X and Y denote the input and output
space, respectively. We consider a well-trained
victim model f that maps X to Y . For an original
sample x correctly predicted by the victim model,
i.e., f(x) = y, an adversarial attack method may
perturb x to generate an adversarial example xadv,
which should satisfy the following conditions:

f(xadv) ̸= f(x) and C(xadv, x) ≥ ϵ, (1)

where C is a semantic consistency function (e.g.,
cosine similarity), and ϵ denotes the threshold dif-
ferentiating between the original sample and the
adversarial example. There are two conditions in
Eq.(1): (1) Misclassification: f(xadv) ̸= f(x), and
(2) Semantic Consistency: C(xadv, x) > ϵ. Adver-
sarial examples typically satisfy the first condition,
but they often fall short of meeting the second con-
dition, which we refer to as “Validity” in this paper.

As listed in Table 2, a generated adversarial ex-
ample should first maintain its semantic meaning
with the original sample, thereby having the same
semantic label, i.e., yadv = y. Subsequently, the
victim model should make a false prediction on the
adversarial example, i.e., f(xadv) ̸= f(x). Once
these criteria are met, this adversarial example xadv
can be deemed as a successful adversarial example.

3.2 AVLLM

Towards judging whether the adversarial example
satisfies yadv = y, prior works often use various
semantic metrics mostly relying on embedding dis-
tance and similarity (e.g., USE), which are not suf-
ficient as the semantic consistency function C. In
this paper, we propose to leverage LLMs to provide
a score with an explanation for assessing the va-
lidity of adversarial examples. The obtained score
can then serve as the semantic consistency function.
Figure 2 shows that our method can be divided into
3 parts: pipeline of AVLLM, serving as a validity
metric, and serving as a plug-and-play patch.

Note that for integrating into existing word-level
attack process, it is necessary to train an open-
source, lightweight and specific AVLLM, other than
using a closed-source, compute-heavy, and general
LLM (such as GPT-4). Compared with calling GPT-
4 API, adopting AVLLM can save costs, and boost
the inference speed due to its fewer parameters.

3.3 Pipeline of AVLLM

Dataset Construction To facilitate research on
evaluating the validity of adversarial examples, we
collect a dataset consisting of about 13K samples
with semantic consistency explanations annotated
by GPT-4. The dataset statistics are shown in Ta-
ble 3. Specifically, we first sample a total of 15K
data from 5 popular text classification datasets, in-
cluding AGNEWS2, IMDB (Maas et al., 2011a),
MR (Zhang et al., 2015a), SST-2 (Socher et al.,
2013), and YELP3. Considering that the attack and
annotation costs are related to the length of sen-
tence, we sampled from these datasets inversely
proportional to the length. Then, these samples
are uniformly distributed to 3 adversarial attack
methods, including TextFooler (Jin et al., 2020),
BERT-Attack (Li et al., 2020), and PWWS (Ren
et al., 2019) for attacking. We choose BERT (De-
vlin et al., 2019)4 as the victim model. Through
pilot experiments, we observe that GPT-45 is able
to provide the semantic consistency score that is
highly consistent with human evaluations. Specif-
ically, the score consistency rate between GPT-4
and human with a tolerance of ±1, is 0.99. The
Mann–Whitney U test (McKnight and Najab, 2010)
also confirms the differences in these scores are not
statistically significant with p < 0.05. Thus, we in-
struct GPT-4 to annotate each adversarial example
with a score ranging from 1 to 5, and an explana-
tion as illustrated in Figure 2(a). After filtering
out invalid ones, we finally obtain a 13.7K adver-
sarial validity evaluation dataset split into training
and validation sets with 12K and 1.7K samples,
respectively. More details are in Appendix A.

Fine-tune Recent advancements in open-source
LLMs (Touvron et al., 2023; Li et al., 2023; Bi-
derman et al., 2023; Zhang et al., 2024) make it
possible to leverage a lightweight LLM for adver-

2http://groups.di.unipi.it/~gulli/AG_corpus_
of_news_articles.html

3https://www.yelp.com/dataset
4https://huggingface.co/google-bert/

bert-base-uncased
5GPT-4-1106-preview is used in this paper.
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y yadv f(xadv) Mis. Validity Success

● ● ● ✕ ✓ ✕
● ● ▲ ✓ ✓ ✓
● ▲ ● ✓ ✕ ✕
● ▲ ▲ ✕ ✕ ✕

Table 2: The relationship in a binary sentiment classi-
fication task among the label of original sample (‘y’),
the label of adversarial example (‘yadv’), victim model’s
mis-prediction of the adversarial one (‘Mis.’), a valid
adversarial example (‘Validity’), and a successful attack
(‘Success’). ● and ▲ represent the positive sentiment
and negative sentiment, respectively.

Dataset Avg. Len # Pre-sampling # Success

AGNEWS 37 2000 (13.1%) 1806 (13.1%)
IMDB 234 300 (2.0%) 198 (1.4%)
MR 21 6000 (39.2%) 5691 (41.2%)
SST2 10 6000 (39.2%) 5253 (38.1%)
YELP 133 1000 (6.5%) 849 (6.2%)

Total - 15300 (100.0%) 13797 (100.0%)

Table 3: Statistics of the curated Dataset. “Success”
refers to the successful generated adversarial examples.
Numbers in parentheses are the percentage of samples.

sarial validity evaluation, which should be more
efficient and cost-effective than using GPT-4. In
this paper, we choose TinyLlama (Zhang et al.,
2024), a compact and open-source 1.1B LLM as
our AVLLM. However, smaller LLMs often strug-
gle with complex tasks requiring CoT reasoning,
which indicates that TinyLlama cannot provide cor-
responding explanation e for the validity score VS.

To enhance the interpretability of the score, we
propose to fine-tune it on the adversarial validity
evaluation dataset for specialized use. We optimize
the supervised fine-tuning objective as follows:

L = E log PAVLLM ([e,VS] | [Inst, x, xadv]) , (2)

where Inst is the template shown in Table 11.
After fine-tuning, AVLLM is expected to gen-

erate an accurate validity score VS to assess the
semantic consistency with a detailed explanation.
The explanation can not only boost the score accu-
racy thanks to CoT reasoning, but also help under-
stand the semantic differences between the original
and adversarial examples. The score is serving as
the semantic consistency function C:

C(xadv, x) = VS(xadv, x). (3)

3.4 AVLLM as a Validity Metric
Through our pilot experiments, we find that many
purportedly successful adversarial examples are

Algorithm 1 AVLLM as a patch.
1: Input: Text-label pair (x, y), victim model f , semantic

consistency function C, semantic difference threshold ϵ
2: Output: A valid adversarial example xadv
3: Initialization: xadv = x
4: W← ∅
5: for 1 ≤ i ≤ |x| do
6: w ← important word ranking
7: W←W ∪ {w}
8: end for
9: for each word wj in W do

10: Initiate the set of CANDIDATES by extracting syn-
onyms using different methods

11: for each ck in CANDIDATES do
12: x′ ← Replace wj with ck in xadv
13: if C(xadv, x) ≥ ϵ then
14: if f(xadv) ̸= y then return xadv
15: else
16: Adjusting the ranking of W
17: end if
18: end if
19: end for
20: end for
21: return NONE

not valid due to the semantic consistency issue. To
evaluate the real performance of attack methods,
we propose to use validity score as an evaluation
metric. This evaluation is conducted after the adver-
sarial examples are generated. The revised attack
success rate (ASRϵ) is calculated as follows:

ASRϵ =
|S ∧ {xadv ∈ S : C(xadv, x) ≥ ϵ}|
|{(x, y) ∈ X × Y : f(x) = y}| , (4)

where S is the set of successful adversarial exam-
ples before filtering. ϵ is the semantic difference
threshold which can be empirically set according
to the validity score distribution. The adversarial
examples that do not meet this threshold are con-
sidered as invalid and failed.

3.5 AVLLM as a Plug-and-play Patch
To guide existing attack methods effectively search-
ing valid adversarial examples, we propose to in-
tegrate AVLLM into the adversarial attack process,
serving as a plug-and-play patch. As outlined in
Algorithm 1, most word-level adversarial attack
methods can be summarized into two main steps:
(1) Word Importance Ranking (L. 3-8). The attack
method adopts various ranking strategies to build
its word substitution candidate set. (2) Generating
Adversarial Example (L. 9-17). The attack method
attempts to craft an adversarial example by replac-
ing the word with the highest importance score
with its candidate. Unlike existing approaches, the
crafted adversarial example is not directly tested
by the victim model. Instead, we take a simple
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Dataset/
Methods

LSTM BERT ALBERT

ASR Semantic ASR Semantic ASR Semantic
ASRo ASR2 ASR3 B.S. USE VS ASRo ASR2 ASR3 B.S. USE VS ASRo ASR2 ASR3 B.S. USE VS

A
G

N
E

W
S

A2T 59.1 31.5↓27.6 12.2↓46.9 96.5 98.0 2.02 56.2 24.6↓31.6 7.5↓48.7 96.5 98.2 1.83 49.1 47.3↓1.8 20.3↓28.8 96.4 98.3 1.99
BAE 99.7 19.6↓80.1 2.7↓97.0 95.8 97.8 1.37 96.8 15.5↓81.3 1.3↓95.5 94.8 97.9 1.30 94.6 18.0↓76.6 2.6↓92.0 95.1 98.1 1.34
PWWS 80.1 24.0↓56.1 7.1↓73.0 95.3 96.2 1.62 66.0 21.7↓44.3 7.2↓58.8 95.2 96.7 1.65 72.2 39.6↓32.6 12.3↓59.9 95.6 97.5 1.74
Alzantot 95.3 36.5↓58.8 13.4↓81.9 95.1 96.4 1.77 90.4 37.2↓53.2 11.2↓79.2 94.9 95.9 1.76 90.8 38.3↓52.5 13.5↓77.3 95.4 96.9 1.83
TextFooler 98.5 31.2↓67.3 6.5↓92.0 95.8 97.0 1.56 93.3 23.3↓70.0 5.9↓87.4 94.9 96.9 1.47 92.7 26.4↓66.3 7.0↓85.7 95.4 97.6 1.52

IM
D

B

A2T 92.9 62.5↓30.4 41.1↓51.8 96.7 98.2 2.57 75.3 49.3↓26.0 19.2↓56.1 95.7 97.5 2.24 71.8 53.4↓18.4 19.0↓52.8 95.8 95.6 2.36
BAE 100.0 21.4↓78.6 10.7↓89.3 97.2 98.5 1.45 100.0 16.4↓83.6 1.4↓98.6 96.3 98.3 1.28 98.8 35.1↓63.7 5.3↓93.5 96.2 98.6 1.57
PWWS 96.4 53.6↓42.8 23.2↓73.2 96.4 97.3 2.20 94.5 45.2↓49.3 20.6↓73.9 96.1 98.0 1.94 78.4 48.5↓29.9 26.3↓52.1 95.9 97.6 2.36
Alzantot 96.4 53.6↓42.8 32.1↓64.3 95.9 96.6 2.24 97.3 58.9↓38.4 26.0↓71.3 95.2 96.7 2.14 86.0 64.3↓21.7 31.6↓54.4 95.3 96.7 2.56
TextFooler 100.0 60.7↓39.3 21.4↓78.6 96.9 98.3 2.20 100.0 57.5↓42.5 19.2↓80.8 95.6 97.2 2.00 95.3 57.9↓37.4 24.0↓71.3 95.7 97.0 2.14

M
R

A2T 93.3 71.8↓21.5 33.7↓59.6 96.2 98.5 2.48 71.8 54.0↓17.8 19.6↓52.2 95.8 97.9 2.35 71.8 50.3↓21.5 17.8↓54.0 95.8 97.9 2.33
BAE 99.4 41.7↓57.7 12.9↓86.5 96.5 99.2 1.72 96.3 27.0↓69.3 4.9↓91.4 95.8 97.9 1.44 98.8 37.4↓61.4 5.9↓92.9 96.2 99.0 1.56
PWWS 90.2 58.3↓31.9 29.5↓60.7 96.1 98.0 2.36 79.8 44.8↓35.0 18.4↓61.4 95.7 97.6 2.17 78.4 51.5↓26.9 25.7↓52.7 95.9 97.7 2.38
Alzantot 93.9 71.8↓22.1 36.2↓57.7 96.1 98.0 2.67 87.1 57.1↓30.0 20.9↓66.2 95.1 97.8 2.22 86.0 62.6↓23.4 31.0↓55.0 95.3 97.6 2.53
TextFooler 98.8 66.9↓31.9 33.1↓65.7 96.3 98.7 2.39 93.9 50.3↓43.6 16.0↓77.9 95.2 96.9 1.95 95.3 57.3↓38.0 21.6↓73.7 95.7 97.9 2.11

SS
T

2

A2T 94.9 69.5↓25.4 26.6↓68.3 96.0 98.1 2.36 71.5 46.2↓25.3 19.9↓51.6 95.4 96.8 2.27 72.4 49.0↓23.4 15.1↓57.3 94.7 96.3 2.16
BAE 100.0 36.2↓63.8 4.5↓95.5 96.5 98.5 1.54 98.4 26.3↓72.1 2.2↓96.2 96.1 98.0 1.37 99.5 22.4↓77.1 2.6↓96.9 96.1 98.6 1.39
PWWS 89.8 55.9↓33.9 23.2↓66.6 96.2 97.7 2.20 81.7 43.0↓38.7 16.7↓65.0 95.2 95.9 2.02 81.8 46.4↓35.4 22.9↓58.9 95.8 97.5 2.20
Alzantot 93.2 72.9↓20.3 36.7↓56.5 95.7 97.5 2.57 80.7 53.2↓27.5 19.4↓61.3 95.0 96.4 2.21 80.7 53.2↓27.5 21.0↓59.7 95.0 96.1 2.25
TextFooler 100.0 66.7↓33.3 28.3↓71.7 96.2 98.1 2.25 99.5 51.6↓47.9 17.2↓82.3 95.1 96.3 1.97 97.9 57.3↓40.6 20.8↓77.1 95.6 97.2 2.07

Y
E

L
P

A2T 89.6 65.3↓24.3 32.4↓57.2 96.0 96.7 2.44 72.3 39.3↓33.0 15.2↓57.1 95.5 96.1 2.05 53.7 34.6↓19.1 15.4↓38.3 95.2 93.5 2.32
BAE 98.8 16.4↓82.4 2.9↓95.9 96.9 98.4 1.32 99.5 14.7↓84.8 0.5↓99.0 95.7 98.0 1.25 97.9 13.3↓84.6 2.1↓95.8 96.2 98.2 1.25
PWWS 91.9 46.2↓45.7 13.9↓78.0 96.2 95.7 1.87 89.5 37.7↓51.8 13.6↓75.9 95.8 94.9 1.81 88.3 28.7↓59.6 10.6↓77.7 95.6 94.5 1.68
Alzantot 93.1 62.4↓30.7 28.3↓64.8 95.7 96.7 2.36 95.8 55.0↓40.8 18.3↓77.5 95.2 94.9 2.08 95.8 58.1↓37.7 20.4↓75.4 95.2 94.9 2.11
TextFooler 97.7 60.1↓37.6 17.3↓80.4 96.2 97.0 2.07 97.9 49.2↓48.7 16.8↓81.1 95.2 96.0 1.97 97.9 54.8↓43.1 19.2↓78.7 95.2 95.6 2.06

Table 4: Re-benchmark of 5 attack methods against victim models including LSTM (Hochreiter and Schmidhuber,
1997), BERT (Devlin et al., 2019), and ALBERT (Lan et al., 2019) on 5 text classification datasets. Each attack
method dynamically generate adversarial examples to target each victim model with 1,000 test samples.

yet effective modification to the attack process (L.
13). The adversarial example is first evaluated by
our semantic consistency function with the help of
AVLLM, and only if it meets the semantic differ-
ence threshold, next steps will be proceeded. The
impact of this modification is highlighted. The re-
jection of invalid adversarial example is expected
to adjust the search direction6, thus guiding attack
method to generate valid and high-quality ones.

4 Experiment

4.1 Evaluation Metrics

There are several metrics used in this paper: (1)
Original Attack Successful Rate (ASRo) is the num-
ber of adversarial examples against the number
of correctly predicted samples, without any post-
revision. (2) Revised ASRs: ASRh, ASRg and
ASRϵ represent original ASRs after filtering out
invalid adversarial examples by human, GPT-4,
and AVLLM with the threshold ϵ, respectively. (3)
USE (Cer et al., 2018), BERTScore (B.S.) (Zhang
et al., 2019), SimCSE (Sim.) (Gao et al., 2021) and
language modeling Perplexity (PPL) calculated by
GPT-2 (Radford et al., 2019) represent semantic
metrics which are often used to measure the sen-
tence similarity between original and adversarial
examples. (4) Validity Score (VS) generated by

6The detailed adjustment is up to specific attack method.

AVLLM represents the average validity score of ad-
versarial examples. Please refer to Appendix B for
more experimental settings.

4.2 Validity Evaluation Results

The goal of validity evaluation is to assess the va-
lidity of generated adversarial examples and re-
benchmark these attack methods. From results in
Table 4, we have two main observations. (1) Same
with prior works, ASRo is very high. But there is
a significant decrease (ASRϵ) when filtering out
invalid examples by AVLLM, even with a tolerant
threshold ϵ = 2. This indicates that real attack
success rates of these attack methods can be much
lower than expected. (2) Existing metrics, such as
B.S. and USE, are very high, ranging from 93.5 to
99. However, our VS scores remain below 3 out
of 5 in average, as highlighted in gray background,
indicating the low validity of generated adversar-
ial examples. This discrepancy suggests that cur-
rent sentence similarity metrics are not sufficient
to effectively measure the semantic consistency be-
tween original samples and adversarial examples.

4.3 Online Attack Results via Patch

To test the performance of AVLLM as a patch be-
ing integrated into existing attack methods, we
conduct experiments evaluating the attack perfor-
mance after patching, with ASR and various se-
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Metric
Threshold

ASR(↑%) USE(↑%) BERTScore(↑%) SimCSE(↑%) ∇ PPL(↓) ∇ Grammar(↓)
ASRo ASR3 ASR4 ASRo ASR3 ASR4 ASRo ASR3 ASR4 ASRo ASR3 ASR4 ASRo ASR3 ASR4 ASRo ASR3 ASR4

A
G

N
E

W
S A2T 51.6 38.9 7.2 98.1 98.5 99.9 96.6 96.7 96.8 45.6 45.7 50.2 36.7 38.9 6.9 0.31 0.21 0.09

BAE 98.9 40.0 29.5 96.7 99.7 99.8 94.3 96.3 97.3 45.8 46.0 45.9 49.0 17.6 9.1 1.03 0.55 0.14
PWWS 74.7 36.8 21.1 96.3 97.9 99.3 94.6 96.4 97.5 44.8 45.0 45.2 46.3 65.9 40.5 0.83 0.51 0.38
TextFooler 100.0 43.2 36.8 96.3 99.6 99.7 94.4 96.5 96.7 44.5 45.3 45.6 42.1 22.9 24.1 0.69 0.51 0.26

IM
D

B

A2T 75.3 53.4 39.7 97.5 97.8 98.4 96.6 96.7 97.1 57.8 57.7 58.1 13.2 11.7 21.3 0.29 0.27 0.27
BAE 100.0 47.9 57.5 98.4 99.3 99.7 96.2 96.9 97.6 57.9 59.1 59.8 18.5 7.4 4.0 0.58 0.29 0.26
PWWS 94.5 47.9 42.5 97.9 99.2 99.0 96.3 97.1 97.3 58.3 59.4 60.8 25.7 18.4 6.9 0.52 0.40 0.38
TextFooler 100.0 52.1 50.7 97.3 99.3 99.4 95.6 96.9 97.2 57.8 59.0 59.1 36.9 24.8 8.6 0.59 0.24 0.21

M
R

A2T 70.0 52.0 34.0 97.5 97.8 99.7 95.7 96.2 96.9 54.6 55.6 55.6 42.3 32.3 12.1 0.26 0.19 0.00
BAE 95.0 54.0 22.0 97.9 99.2 99.9 95.7 96.5 97.4 53.5 53.8 54.9 32.1 28.1 0.4 0.09 0.06 0.06
PWWS 78.0 45.0 18.0 96.9 98.5 99.6 95.1 96.0 96.5 54.5 55.7 57.5 28.6 31.6 9.0 0.17 0.20 0.17
TextFooler 90.0 58.0 24.0 96.9 99.3 99.9 94.9 99.3 99.9 54.5 55.2 55.1 10.9 0.2 10.6 0.28 0.34 0.17

SS
T

2

A2T 66.7 50.5 15.1 95.1 96.0 99.1 95.1 96.1 95.9 51.9 52.1 56.0 42.1 34.8 12.6 0.18 0.11 0.21
BAE 98.9 82.8 60.2 93.5 95.8 97.6 96.0 96.2 96.3 50.6 51.5 51.9 41.2 17.1 29.9 0.09 0.10 0.03
PWWS 77.4 45.2 38.7 94.3 96.7 96.9 94.9 95.8 96.4 52.5 53.0 52.1 43.6 44.6 37.8 0.17 0.19 0.17
TextFooler 100.0 68.8 51.6 93.6 96.8 97.9 94.5 95.3 96.1 51.9 52.6 52.2 52.2 57.4 59.9 0.26 0.17 0.16

Y
E

L
P

A2T 71.7 54.0 41.0 95.8 96.1 97.0 95.7 96.1 97.0 51.4 52.2 52.0 32.2 21.5 16.6 0.23 0.22 0.17
BAE 99.0 68.0 42.0 96.0 97.5 99.2 95.9 95.6 96.8 50.7 51.8 52.6 19.7 20.2 11.3 0.62 0.58 0.50
PWWS 85.6 47.0 38.0 94.5 96.3 97.9 95.5 96.1 96.6 52.1 52.1 52.3 23.6 22.6 57.5 0.59 0.53 0.50
TextFooler 96.0 71.0 54.0 94.8 97.8 98.6 95.5 96.2 96.7 51.2 52.0 52.2 16.0 24.1 6.5 0.29 0.29 0.22

Table 5: Evaluating AVLLM as a patch (ASR3 and ASR4) across 4 attack methods against BERT model on 5 datasets.
∇PPL is the PPL difference between origin samples and adversarial examples. The best performance is in bold.

mantic consistency metrics. From Table 5, we find
that: (1) Though the ASR after patching shows
a decline, it overpasses offline results in Table 4,
which indicates our AVLLM can effectively guide
the search. (2) Our method consistently boosts
nearly all semantic metrics. Meanwhile, as the
constraint strength increases (↑ ϵ), the semantic
consistency between adversarial examples and orig-
inal samples becomes better. This shows the effec-
tiveness of our method in helping attack methods
generate valid adversarial examples. (3) In terms
of ∇PPL, adversarial examples after patching are
more grammatically coherent and semantically con-
tinuous, suggesting AVLLM as a patch is able to im-
prove the quality of adversarial examples. (4) We
also use grammar checker7 to detect grammar er-
rors additionally introduced by adversarial attacks
(∇Grammar). The results suggest our method can
limit these caused grammar errors in generating ad-
versarial examples, helping maintain the semantic
consistency and fluency of the text.

5 Analysis

In this section, we aim to take comprehensive anal-
ysis and engage in thorough discussions to study
the effectiveness of our method in evaluating and
refining the quality of adversarial examples.

5.1 Credibility of Validity Score

We take consistency evaluations in Table 6 to verify
the credibility of the proposed validity score. We

7https://github.com/jxmorris12/language_tool_
python

GPT-4 Human

GPT-4 - 0.72 / 0.99 / ±0.28
AVLLM 0.66 / 0.97 / ±0.39 0.86 / 0.99 / ±0.15

Table 6: Consistency rate of validity score between
AVLLM, GPT-4, and human. The first figure in each
cell is the exact match rate, the second figure is the
consistency rate with a tolerance of 1, and the third
figure is the mean absolute difference. TinyLlama w/o
fine-tuning is hard to follow the instruction even under
few-shot settings, thus being excluded from comparison.

find that exact match rates may not be very con-
vincing, however, note that ϵ representing for the
threshold of a valid or an acceptable adversarial ex-
ample can be empirically tuned8. With a tolerance
range of 1, the consistency rates for both GPT-4
and AVLLM compared to human is 0.99, suggest-
ing the high credibility of the proposed validity
score. Surprisingly, AVLLM exhibits a higher align-
ment with human, which indicates the success of
our specialized fine-tuning.

5.2 Comparison with Existing Constraints
Table 7 compares the performance of our Valid-
ity Score constraint (VS) with existing semantic
constraints. The results show that our validity con-
straint is more effective in helping attack methods
generate adversarial examples with high semantic
consistency. Besides, we find that for all semantic
constraints, the performance gap (ASRo − ASRg)
is much lower as the constraints become tighter. In

8That is the reason why this paper often shows experimen-
tal results with different ϵ values.

4908

https://github.com/jxmorris12/language_tool_python
https://github.com/jxmorris12/language_tool_python


Constraint ASRo ASRg B.S. USE Time (sec)
M

R
Default 86.2 25.6↓60.6 95.6 95.3 2.9

USE ≥ 0.90 25.6 12.9↓12.7 97.4 96.4 3.4
USE ≥ 0.95 4.7 3.5↓1.2 98.2 97.3 7.3
B.S. ≥ 0.90 42.4 14.7↓27.6 97.4 92.8 6.9
B.S. ≥ 0.95 22.9 9.1↓13.8 98.3 94.3 8.1

VS ≥ 2 74.1 27.1↓47.0 88.0 96.0 26.7
VS ≥ 3 52.3 37.8↓14.5 97.0 98.7 34.1
VS ≥ 4 24.5 19.8↓4.8 97.7 99.8 64.9

SS
T

2

Default 85.8 19.2↓66.6 95.4 95.7 3.5

USE ≥ 0.90 25.8 12.1↓13.7 97.5 96.3 4.3
USE ≥ 0.95 9.2 6.4↓2.8 98.3 98.4 6.8
B.S. ≥ 0.90 44.6 16.4↓28.2 97.5 91.6 5.7
B.S. ≥ 0.95 23.7 9.9↓13.8 98.3 93.6 7.6

VS ≥ 2 76.3 26.1↓50.2 86.1 96.1 34.9
VS ≥ 3 61.8 42.5↓19.3 95.6 96.3 36.3
VS ≥ 4 41.4 33.2↓8.2 96.2 97.9 57.6

Table 7: Comparison of the performance among vari-
ous semantic constraints. “Default” means the default
constraint setting of attack methods. “Time” means
the average time of generating a successful adversarial
example. The performance is averaged over 4 attack
methods including A2T, BAE, PWWS and TextFooler.

terms of real attack performance (ASRg), our valid-
ity score constraint achieves the best performance
when the threshold is set to 3. Even we adopt a
lightweight LLM as AVLLM, it still brings much
computational overhead. We will explore more ef-
ficient LLM technologies, such as quantization and
parallelism, to improve its speed in the future.

5.3 Suggestions for Adversarial Attacks
In this section, we aim to provide valuable sugges-
tions for both the evaluation of adversarial attacks
and designing of attack methods.

Evaluation Evaluation is known to be time-
consuming since word-level attack methods would
search the whole space of substitution combina-
tions to find a successful adversarial example, re-
sulting in thousands queries for long sentence. Ac-
cording to Figure 3, most valid adversarial exam-
ples can be found within 152 queries if we consider
the minimum semantic threshold is 3. Similarly,
the modification rate of most valid adversarial ex-
amples is 0.31. This finding suggests that the eval-
uation can save lots of time by limiting the number
of queries and the modification rate with appropri-
ate values. Please refer to Appendix C for results
of other datasets and attack methods.

Design of Attack Method The used constraints
and sources of synonyms are crucial in designing
an effective and semantic consistent adversarial at-
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Figure 3: Correlation between validity score, number of
queries, and modification rate on the MR dataset with
TextFooler as the attack method. Thresholds are plotted
based on 95% percentile of valid adversarial examples.

    IMDB

       AGNEWS

MR

SST2  
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1.2
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2.0
2.4
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BAE
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TextFooler

Figure 4: Performance in semantic consistency of 5
attack methods on 5 datasets.

tack method. As shown in Table 8, we find that
(1) Masked language modeling (MLM) based at-
tack method (e.g., BAE) demonstrates limitations
in searching valid adversarial examples that sat-
isfy the semantic consistency requirement, since
the objective of MLM is predicting the masked
word with most probable words rather than syn-
onyms. For instance, when the attack method are at-
tempting to find synonyms by predicting “[MASK]”
in the sentence “I [MASK] this movie”, both
"like" and "hate," which are antonyms, are pos-
sible predictions. (2) Using WordNet (Pedersen
and Kolhatkar, 2009) (e.g., PWWS) or counter-
fitting (Mrkšić et al., 2016) (e.g., TextFooler) as
the source of finding synonym candidates gener-
ally have higher validity scores, thus being recom-
mended. (3) More constraints often lead to better
performance. Typically, adversarial examples gen-
erated by A2T who uses 4 unique constraints has
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Dataset Attacker Example

SST2 PWWS
another in-your-face wallow in the lower depths made by people who have never sung those blues.
another in-your-face wallow in the humbled depths made by people who have never sung those blues.
another in-your-face wallow in the small depths made by people who have never sung those blues.

IMDB Textfooler
This is the greatest movie ever. If you have written it off with out ever seeing it. You must give it a second try.
This is the worst movie ever. If you have written it off with out ever seeing it. You must give it a second try.
This is the noblest movie ever. If you have written it off with out ever seeing it. You must give it a second try.

YELP BAE
Nice atmosphere. Cheeseburger was not all that.
Nice too. Cheeseburger was not all that.
Great atmosphere. Cheeseburger was not all that.

YELP BAE
Props to all the performers but it really wasn’t worth seeing. Trust me, I’ve seen a lot of shows...
Props to all the performers but it sometimes wasn’t worth seeing. Trust me, I’ve seen a lot of films...
Props to all the performers but it almost wasn’t needed seeing. Trust me, I’ve seen a lot of films...

Table 9: Comparison of original and adversarial examples on different datasets under the PWWS and BAE attacks.
In each cell of “Example”, the first row represents the original sample, the second row is the adversarial example
w/o AVLLM, and the third row is the adversarial example w/ AVLLM.

Attack Method Constraints Source of Synonyms

A2T

Modification Rate

Counter-fitting Embedding
Word Embedding Distance
DistilBERT Cosine Similarity
Part-of-Speech Consistency

BAE USE Masked Language Modeling

Alzantot
Modification Rate

Counter-fitting EmbeddingPPL
Word embedding distance

PWWS - WordNet

Textfooler
Word Embedding Distance

Counter-fitting EmbeddingPart-of-Speech Consistency
USE

Table 8: Basic information of 5 attack methods includ-
ing default constraints and sources of finding synonyms.

the highest validity score. This indicates devel-
oping more constraints is necessary for designing
more powerful attack methods.

5.4 Case Study

The case study on the quality of the generated ad-
versarial examples is shown in Table 9. Compared
with directly generated adversarial examples (w/o
AVLLM), with the help of AVLLM, the generated
adversarial examples tend to have higher semantic
consistency with the original samples, which indi-
cates that the quality of adversarial examples can
be improved with the proposed patch.

6 Conclusion

In this paper, our investigation first reveals a preva-
lent issue in word-level adversarial attack methods,
wherein many of purportedly successful adversarial
examples are actually invalid due to the semantic
consistency issue. Building on this finding, we
advocate using LLMs to offer an interpretable va-
lidity score for assessing the semantic consistency
between original sample and adversarial example.
To this end, we construct a 13K dataset for adversar-

ial validity evaluation with the help of GPT-4, and
then fine-tune a lightweight LLM as AVLLM for
saving costs and boosting the inference speed. The
proposed AVLLM can not only serve as a validity
metric to assess the semantic consistency of adver-
sarial examples, but also serve as a plug-and-play
patch to help existing attack methods generate high-
quality and valid adversarial examples. Through
extensive experiments and analysis, our method
demonstrates its efficacy and provides valuable in-
sights for advancing research in adversarial attacks.

Limitations

• This paper focuses on word-level adversar-
ial attacks. While these attacks are the most
common in this field, the semantic consis-
tency issues of other types of attacks such
as sentence-level attack are valuable to study.
Besides, the studied types of word-level attack
algorithms are basically limited to synonyms
substitutions, other types of substitutions like
insertion and deletion are not well included.

• We only consider TinyLlama (Zhang et al.,
2024) as AVLLM. It is necessary to explore
more open-source LLMs to validate the effec-
tiveness of our method. Also for the victim
models, currently popular large-scale models
like LLaMA (Touvron et al., 2023) are not
being tested, while they are important to study
especially in the era of LLM.

• According to our experiments in Table 7, our
method may bring much computational over-
head to the attack process. Recent LLM tech-
nologies for efficiency, such as quantization
and parallelism will be explored in the future.
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In this paper, we utilize adversarial attack frame-
work proposed by Morris et al. (2020b), which
were generated using multiple adversarial attack
module (Morris et al., 2020b) including adver-
sarial examples crafted using techniques such as
PWWS (Ren et al., 2019), TextFooler (Jin et al.,
2020), BAE (Garg and Ramakrishnan, 2020) and so
on. These examples were tested on a range of mod-
els, including LSTM (Yu et al., 2019), BERT (De-
vlin et al., 2019), and ALBERT (Lan et al., 2019),
which were trained or fine-tuned on datasets like
IMDB (Maas et al., 2011a), AGNEWS (Zhang
et al., 2015b) and so on.

The victim models used to generate these
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classifiers were fine-tuned using the TextAttack
toolkit (Morris et al., 2020b) and publicly available
on the TextAttack documentation page9 and on the
Huggingface model hub10. Detailed hyperparam-
eters for fine-tuning these models are available in
the respective model cards and config.json files.

Each dataset employed serves a specific purpose
in our study: AGNEWS, an essay-level dataset, is
used for multi-class news classification. IMDB, a
document-level dataset, focuses on sentiment clas-
sifications of movie reviews. The MR dataset offers
fine-grained labels for movie review sentiment clas-
sification. SST-2 enables phrase-level sentiment
analysis, and the YELP dataset comprises business
reviews used for sentiment analysis.

B Detailed Experiment Settings

B.1 Datasets

Experiments are conducted on five benchmark clas-
sification datasets from phase-level to document-
level tasks, including AGNEWS (Zhang et al.,
2015b), IMDB (Maas et al., 2011b), MR (Pang
and Lee, 2005), SST2 (Socher et al., 2013) and
YELP (Zhang et al., 2015a).

B.2 Victim Models

Three different types of DNNs are adopted
as victim models, including long-short term
memory (LSTM) (Hochreiter and Schmidhuber,
1997), BERTBASE (Devlin et al., 2019), and
ALBERTBASE-V2 (Lan et al., 2019). LSTM con-
sists of 2 layers of 300-dimensional memory cells
with the 300-dimensional pre-trained GloVe em-
beddings (Pennington et al., 2014). BERTBASE
and ALBERTBASE-V2 contains 12 layers of 768-
dimensional transformer blocks and one linear
layer for classification, but ALBERTBASE-V2 has
less parameter than BERTBASE.

B.3 Attack Methods

Five strong word-level adversarial attack methods
are employed as attackers. Yoo and Qi (2021b)
propose A2T which first use gradient-based word
importance ordering and DistilBERT (Sanh et al.,
2019) semantic textual similarity constraint. Garg
and Ramakrishnan (2020) first compute token im-
portance and then replaces and inserts tokens in
the original text by masking a portion of the text

9https://textattack.readthedocs.io/en/latest/
3recipes/models.html

10https://huggingface.co/textattack

and leveraging the BERT-MLM to generate substi-
tutions. Ren et al. (2019) propose PWWS which
considers the word saliency to determine the word
modification order for greedy attack. Jia et al.
(2019) develop an attack algorithm that exploits
population-based gradient-free optimization via ge-
netic algorithms. Jin et al. (2020) first identify
the important words and then replace them with
the semantically similar and grammatically correct
words, named TextFooler.

B.4 Inference Settings

Given that high temperature brings a better align-
ment with humans, for the stage of using GPT-4
for inference and collecting samples, we use a tem-
perature of 0.95 and a top-p of 1; For the hyper-
parameters for TinyLlama, the temperature we use
is 0.9 and the top-p is 0.95.

B.5 Finetune Settings

For the fine-tuning protocol, we adhered to stan-
dard hyperparameters known to yield effective re-
sults in model training. We set a training batch
size of 16 per device, leveraging gradient accu-
mulation over one step to enhance memory effi-
ciency. A cosine decay strategy was selected for
the learning rate scheduler, balancing the need for
learning rate reduction over time while maintain-
ing model adaptability. To monitor progress and
ensure data integrity, logging and model saving
were scheduled at intervals of every 5 and 500
steps, respectively. The initial learning rate was
carefully chosen at 5e−5, with the training extend-
ing over 6 epochs to thoroughly imbibe the nu-
ances of our 13K dataset into TinyLlama. Addi-
tionally, we utilized half-precision floating-point
(fp16) training to quicken the training phase with-
out compromising the model’s learning capacity
significantly. DeepSpeed optimization was also
employed to further enhance training efficiency, re-
ducing computational demand while maintaining
high performance.

C Additional Experimental Results

C.1 Win-Rate

To evaluate which adversarial attack method have
the best performance in remaining semantic sim-
ilarity. We conduct a comprehensive experiment
which evaluate the result of different adversarial
attack methods. The first step, for each dataset,
we randomly sample 100 test data from the orig-
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Figure 6: Win Rates by Adversarial Attack Methods in different datasets
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Figure 7: Scatter plots show score vs. query numbers across datasets. X-axis: query numbers; Y-axis: Score.
Different subplots reveal varied query number ranges. ‘AGNEWS’ and ‘IMDB’ exhibit a strong negative correlation
between increasing query numbers and Score. ‘MR’ and ‘YELP’ show a similar but weaker correlation. ‘SST2’
displays samples in a narrow query number range with no discernible correlation.
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Figure 9: The density plot of adversarial attack methods in different dataset
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Figure 12: Scatter plots illustrate Score against modification rate and number for different attack methods. The
x-axis shows modification rate or number; the y-axis indicates the Score. Part (a) shows Score versus modification
rate, revealing no significant correlation across all three attack methods. Part (b) contrasts this, displaying stronger
correlations between Score and modification number for the Textfooler and PWWS methods.

inal datasets, and then we generated adversarial
examples by different adversarial attacks, we use
our fine-tuned tiny-llama to score them, in last, we
get a score from 1 to 5 for each samples, and we
draw win-rate heatmaps Figure 6 to analyze the
performance of different adversarial attacks. We
can know that, the BAE is the worst adversarial
attack method, and the Faster-Alzantot and A2T
are strong adversarial attack methods.

C.2 VScore V.S. # Query

Figures 7 and 8 offer deeper insights into how
different attack strategies and datasets impact the
query number-quality relationship in adversarial
text generation. In addition, Figure 7 shows that
VScore falls below 2 when queries exceed 274,
highlighting the need to assess query volume’s ef-
fect on adversarial text generation efficacy. This
underscores the importance of detailed analyses
across various methods and datasets due to the com-
plexity of adversarial attacks.

Table 10 examines VScore-query number corre-
lations, revealing a nuanced relationship varying
by context. In datasets like AGNEWS and IMDB,

a strong correlation between VScore and query
volume is evident, indicating that query number
markedly affects ASR in these cases.

C.3 VScore V.S. Modification Rate or Number

Figure 10 shows the overall relationship between
score and modification rate or number. Further-
more, Figure 11 and 12 reveals a notable trend spe-
cific to the AGNEWS, IMDB, and YELP datasets.
We observe a negative correlation between VScore
and both the modification rate and the number of
modifications. This indicates that, as the rate of
modification or the total number of modifications
in adversarial texts increases, the VScore corre-
spondingly decreases.

This trend underscores the necessity of adopting
dataset-specific strategies when launching adver-
sarial attacks. The variation in correlation across
different datasets suggests that a uniform threshold
for modification rate or number may not be univer-
sally effective. Instead, attackers should consider
setting distinct thresholds tailored to the character-
istics and vulnerabilities of each target dataset.
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Dataset/Methods BERTScore MiniLM USE SimCSE
Spearman Pearson Spearman Pearson Spearman Pearson Spearman Pearson

Overall - 0.2672 0.2701 0.1658 0.1397 0.2346 0.2192 0.2256 0.1677

Datasets

AGNEWS 0.4878 0.4900 0.4392 0.3762 0.4644 0.4145 0.5046 0.4401
IMDB 0.6874 0.6491 0.3796 0.2896 0.6412 0.5438 0.5743 0.3325
MR 0.2804 0.3122 0.2448 0.2472 0.2829 0.3053 0.3187 0.2912
SST2 0.1578 0.1691 0.1498 0.1355 0.1989 0.2029 0.2392 0.2016
YELP 0.4575 0.4449 0.3796 0.2896 0.4293 0.3456 0.4191 0.2947

Methods
TextFooler 0.3709 0.3643 0.1724 0.1399 0.3106 0.2800 0.2338 0.1794
PWWS 0.1639 0.1623 0.1007 0.0815 0.1387 0.1119 0.1274 0.0726
Bert-Attack 0.2208 0.2483 0.2610 0.2629 0.2439 0.2726 0.3676 0.3422

Table 10: Correlation between Score and sentence similarity at different granularities.

C.4 VScore V.S. Sentence Similarity Metrics
We examined metrics like BERTScore, USE,
CSESIM, and MiniLM for sentence similarity
assessment to gauge their effectiveness in con-
straining adversarial texts. Analyzing VScore-
sentence similarity correlations across granularities
(Table 10) revealed generally weak correlations,
indicating the limited efficacy of current metrics in
capturing the relationship between original and ad-
versarial examples. This suggests a gap in existing
metrics’ ability to closely measure adversarial texts
against originals. Notably, AGNEWS and IMDB
showed stronger correlations, highlighting variable
metric performance across datasets.

D Human Annotation Details

The annotation is conducted by 5 authors of this
paper independently. These annotators are profi-
cient in this domain, with different genders, ages,
and educational backgrounds to ensure diversity.
They are required to give objective judgments with-
out considering answer lengths to minimize human
bias. The prompts for human annotators are the
same for GPT-4, which is detailed in Appendix E.

E Prompt Design and Case Study

In Table 11, we detail the dataset construction using
a prompt-response format. Figure 13 presents a
comprehensive prompt, including one-shot and test
samples for reference.

As shown in Figure 14, we present a selection
of case studies derived from the results of AVLLM,
showcasing a range of scores from 1 to 5.
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➤ Prompt: You are a helpful assistant to analysis and rate the Semantic Similarity metric
between two text samples: an original text and an adversarial text with changes
like synonym substitutions and minor grammatical alterations.
Evaluation Criteria: Semantic Similarity (1-5) - This measures how closely
the adversarial text aligns with the original in terms of meaning. Changes
may include synonym substitutions and minor grammatical errors, highlighted
with ‘[[’ and ‘]]’. The score should reflect the degree to which the altered text
preserves the original’s meaning, where 5 signifies identical meaning and 1
indicates a completely different meaning.
Evaluation Steps:
1. Read both the original and adversarial text samples carefully.
2. Pay attention to the words or sentences modified in the adversarial example,
as indicated by ‘[[’ and ‘]]’.
3. Evaluate the extent to which the adversarial text maintains the semantic
essence of the original.
4. Answer by starting to analyze the given example regarding the evaluation
criteria as concise as possible (no more than 50 words), and then give the
numeric rating.
Question: On a scale of 1-5, where 5 is the highest, how similar is the adversarial
text to the original in terms of semantic meaning? Your should follow the
Evaluation Steps and rate based on Evaluation Criteria. Please adhering to
the JSON format as shown in examples. Note that repetition of the provided
sentences is unnecessary.

Response: "Original": "the cast has a high time, but de broca has [[little]] enthusiasm for
such antique pulp." "Adversarial": "the cast has a high time, but de broca has
[[much]] enthusiasm for such antique pulp." "Analysis": "The change from
’little’ to ’much’ enthusiasm significantly alters the sentiment about de Broca’s
attitude towards the ’antique pulp’. This shifts the meaning from negative to
positive." "Score": 1.

Table 11: The prompt for GPT-4 to collect our dataset. We give the specific task instructions, steps for chain-of-
thought, and one-shot samples.
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➤ Analyze two text samples: an original and an adversarial one altered with synonym substitutions
and permitted grammatical errors. Your task is to determine if the adversarial example retains the same
meaning as the original. We allow some simple syntax errors. Seriously identify the key synonyms and
any grammatical deviations used, assess if these changes significantly alter the message or tone, and
then score the consistency on a scale from 1 to 5. A score of 5 indicates identical meaning, while 1
suggests a completely different meaning. Conclude with a brief reason for your score.
➤ Examples:
Original: the cast has a high time , but de broca has [[little]] enthusiasm for such antique pulp .
Adversarial: the cast has a high time , but de broca has [[much]] enthusiasm for such antique pulp .
Reason: This change in word choice from "little" to "much" dramatically alters the meaning of the
sentence. The structure and the rest of the content remain unchanged, but the sentiment about de
Broca’s enthusiasm for "such antique pulp" is completely reversed. Therefore, the consistency score is
1 out of 5, reflecting a completely different meaning conveyed by the adversarial example compared to
the original.
Score: 1
......
Original: the [[lady]] and the duke is eric rohmer’s economical antidote to the bloated costume drama
Adversarial: the [[woman]] and the duke is eric rohmer’s economical antidote to the bloated costume
drama
Reason: Despite the slight shift in nuance due to the change from "lady" to "woman," the overall
meaning of the sentence is largely unchanged. The core message about Eric Rohmer’s film and its
contrast to typical costume dramas remains intact. Therefore, the consistency score is 5 out of 5,
indicating that the adversarial example retains the same meaning as the original.
Score: 5
➤ Test Sample:
"original": "I just finished watching this movie and am disappointed to say that I didn’t enjoy it a
bit. It is so [[slow]] Slow and [[uninteresting]]. This kid from Harry Potter [[plays]] a shy teenager
with an rude mother, and then one day the rude mother tells the kid to find a job so that they could
accommodate an old guy apparently having no place to live has started to live with his family and
therefore the kid goes to work for a old lady. And this old lady who is living all alone teaches him
about girls, driving car and life! I couldn’t get how an 18 year old guy enjoy spending time with an
[[awful]] lady in her 80s. Sorry if my comments on this movie has bothered people who might have
enjoyed it, I could be wrong as I am not British and may not understand the social and their family
structure and way of life. Mostly the movie is made for the British [[audience]].",
"adversarial": "I just finished watching this movie and am disappointed to say that I didn’t enjoy it
a bit. It is so [[lento]] Slow and [[humdrum]]. This kid from Harry Potter [[dessert]] a shy teenager
with an rude mother, and then one day the rude mother tells the kid to find a job so that they could
accommodate an old guy apparently having no place to live has started to live with his family and
therefore the kid goes to work for a old lady. And this old lady who is living all alone teaches him
about girls, driving car and life! I couldn’t get how an 18 year old guy enjoy spending time with an
[[egregious]] lady in her 80s. Sorry if my comments on this movie has bothered people who might
have enjoyed it, I could be wrong as I am not British and may not understand the social and their family
structure and way of life. Mostly the movie is made for the British [[listeners]].",

Figure 13: An example of a comprehensive prompt with one-shot samples and input samples.
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➤ original text: achieves its main strategic objective
perturbed text: perceives its cardinal political objective
Analysis: The change from ’achieves’ to ’perceives’ and ’strategic’ to ’political’ completely alters the
context, shifting from accomplishing a goal to merely understanding a central policy.
Score: 1
➤ original text: while undercover brother is definitely one for the masses, it’s also full of sharp, smart
satire .
perturbed text: while undercover brother is definitely one for the masses, it’s too full of sharp,
impertinent irony .
Analysis: Changing ’also’ to ’too’ slightly modifies emphasis, but ’smart satire’ to ’impertinent irony’
changes the tone from clever to disrespectful, altering the original’s complimentary nature.
Score: 2
➤original text: smart and fun , but far more witty than it is wise .
perturbed text: smart and funny , but not more funny than it is wise .
Analysis: Changing ’fun’ to ’funny’ is minimal, but ’far’ to ’not’ and repeating ’funny’ instead of
’witty’ distorts the original comparison. The essence is slightly altered.
Score: 3
➤original text: the film does a solid job of slowly, steadily building up to the climactic burst of
violence .
perturbed text: the film does a solid labor of slowly, steadily building up to the climactic burst of
violence .
Analysis: Replacing ’job’ with ’labor’ is a minor alteration; the overall meaning concerning the film’s
buildup to a key moment of climax is preserved.
Score: 4
➤original text: true star
perturbed text unfeiged star
Analysis: The substitution of ’true’ with ’unfeigned’ maintains the meaning, as both words convey
authenticity or sincerity.
Score: 5

Figure 14: Case study in our proposed dataset. We highlight the modification words in our examples.
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