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Abstract

Several post-training quantization methods
have been applied to large language models
(LLMs), and have been shown to perform well
down to 8-bits. We find that these methods
break down at lower bit precision, and inves-
tigate quantization-aware training for LLMs
(LLM-QAT) to push quantization levels even
further. We propose a data-free distillation
method that leverages generations produced by
the pre-trained model, which better preserves
the original output distribution and allows quan-
tizing any generative model independent of its
training data, similar to post-training quantiza-
tion methods. In addition to quantizing weights
and activations, we also quantize the KV cache,
which is critical for increasing throughput and
supporting long sequence dependencies at cur-
rent model sizes. We experiment with LLaMA
models of sizes 7B, 13B, and 30B, at quanti-
zation levels down to 4-bits. We observe large
improvements over training-free methods, es-
pecially in the low-bit settings.

1 Introduction

Following GPT-3 (Brown et al., 2020), several
families of large language models (LLMs) such
as OPT (Zhang et al., 2022), PALM (Chowdhery
et al., 2022), BLOOM (Scao et al., 2022), Chin-
chilla (Hoffmann et al., 2022) and LLaMA (Tou-
vron et al., 2023a) have established that increasing
model size leads to improved model capabilities.
As a result, language models with tens of billions
or even hundreds of billions of parameters have
become the norm in today’s AI landscape. Despite
the growing excitement around LLMs, serving such
models to the benefit of billions of users faces sig-
nificant hurdles due to their large computational
cost and environmental footprint.

Fortunately, there has been an increasing effort
to accurately quantize LLMs, with multiple recent
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Figure 1: Employing LLM-QAT, accuracy improves
by 3.0 and 1.4 points for LLaMA-7B and LLaMA-
30B models over SoTA PTQ under W4A8KV8 settings.
Additionally, W4A8KV16 LLaMA-13B outperforms
W8A8KV16 LLaMA-7B by 1.1 points with similar OPs.
These improvements are substantial, especially when
considering that the LLaMA-13B model surpasses the
performance of the 7B model by a mere 1.8 points. The
quantization settings are W4A8KV8 / W4A8KV16 /
W8A8KV8 / W8A8KV16 from left to right. See Table 1
for details.

works (Xiao et al., 2022; Yao et al., 2022) focusing
on 8-bit post-training quantization of weights and
activations and achieving little to no loss of accu-
racy, as well as quantizing the weight and KV cache
and using GPU/CPU offloading to achieve high-
throughput LLM inference (Sheng et al., 2023a).
However, SoTA post-training quantization methods
dramatically degrade in quality when quantizing
weights, activations, and KV cache together to be-
low 8-bit. For lower quantization bit-widths, we
find it necessary to resort to quantization-aware
training (QAT).

To our knowledge, QAT for LLMs has not been
investigated before. This is understandable for two
reasons. First, LLM training is technically diffi-
cult and resource-intensive. Second, QAT needs
training data, which for LLMs is difficult to ob-
tain. The sheer scale and diversity of pre-training
data is itself an obstacle. Pre-processing might
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Figure 2: Overview of LLM-QAT. We generate data from the pre-trained model with next token generation, which
is sampled from top-k candidates. Then we use the generated data as input and the teacher model prediction as label
to guide quantized model finetuning.

be prohibitive, or worse, some data might simply
not be available due to legal restrictions. It is also
increasingly common to train LLMs in multiple
stages, involving instruction tuning and reinforce-
ment learning (Ouyang et al., 2022), which would
be very difficult to replicate during QAT. In this
work, we side-step this issue by using generated
data from the LLM itself for knowledge distilla-
tion. This simple workaround, which we refer to
as data-free knowledge-distillation is applicable to
any generative model independent of whether or
not the original training data is available. We show
that this method is better able to preserve the origi-
nal model’s output distribution, even compared to
training on large subsets of the original training set.
Moreover, we can successfully distill quantized
models using only a small set (100k) of sampled
data, thus keeping computational costs reasonable.
All of our experiments are conducted using a single
8-gpu training node.

As a result, we are able to distill the 7B, 13B
and 30B LLaMA models with activations quan-
tized down to 8 bits, weights, and KV cache down
to 4-bits. In this regard, our approach exhibits
significant enhancements in quality compared to
post-training quantization. Notably, larger models
employing QAT outperform smaller models utiliz-
ing floating-point 16-bit representations, despite
having similar model sizes, as illustrated in Fig-
ure 1. Furthermore, we have successfully quan-
tized activations to 6-bit precision, surpassing what
was possible with existing methods. For a compre-
hensive analysis of our experimental results and
detailed ablations, please refer to Section 3.

In summary, we present the first application of
QAT to LLMs, resulting in the first accurate 4-bit
quantized LLMs. We also demonstrate quantizing
the KV cache simultaneously with weights and
activations, which is critical to alleviate throughput
bottlenecks for long sequence generation. All of
this is achieved by a novel data-free distillation

method, which makes QAT practical for large pre-
trained generative models.

2 Method

Quantizing large language models (LLMs) using
quantization-aware training (QAT) is a nontrivial
task with challenges in two key aspects. First,
LLMs are pre-trained to excel in zero-shot gen-
eralization, and it is crucial to preserve this capa-
bility after quantization. Therefore, selecting an
appropriate fine-tuning dataset is important. If the
QAT data is too narrow in a domain or significantly
different than the original pre-training distribution,
this is likely to hurt model performance. On the
other hand, it is difficult to replicate the original
training setup exactly, due to the scale and complex-
ity of LLM training. In Section 2.1, we introduce
data-free quantization-aware training (QAT) which
produces QAT data using next token data gener-
ation. This method demonstrates superior perfor-
mance compared to using subsets of the original
pre-training data. Second, LLMs exhibit unique
weight and activation distributions characterized
by a significant presence of outliers, which distin-
guishes them from smaller models. Consequently,
the state-of-the-art quantization clipping methods
for small models do not work out of the box for
LLMs. In Section 2.2, we identify suitable quantiz-
ers for LLMs.

2.1 Data-free Distillation

In order to closely synthesize the distribution of the
pre-training data with a limited amount of fine-
tuning data, we proposed next token data gen-
eration from the original pre-trained model. As
shown in Figure 2 (a), we randomize the first token
<start> from vocabulary and let the pre-trained
model generate the next token <out1>, then the
generated token is appended to the start token for
generating new output <out2>. We repeat this
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iterative procedure until we reach either the end-of-
sentence token or the maximum generation length.

We test three different sampling strategies in
the next token generation. The most straightfor-
ward way is to pick the top-1 candidate as the next
token. However, the generated sentence lacks di-
versity and will cyclically repeat several tokens. To
address this issue, we instead stochastically sam-
ple the next token from the distribution using the
SoftMax output of the pre-trained model as the
probability. This sampling strategy yields more di-
verse sentences and greatly enhances the accuracy
of the fine-tuned student model. Furthermore, we
discover that the initial few tokens play a crucial
role in determining the prediction trend. There-
fore, it is important for them to have higher con-
fidence. In our generative process, we employ a
hybrid sampling strategy that deterministically se-
lects the top-1 predictions for the first 3~5 tokens
and stochastically samples the remaining tokens. A
detailed ablation study comparing different gener-
ated data and real data is presented in Section3.3.1.

2.2 Quantization-Aware Training

2.2.1 Preliminaries
In this work, we study linear quantization i.e., uni-
form quantization. Linear quantization can be cate-
gorized into two categories based on whether the
real values are clipped or not: MinMax quantiza-
tion, which preserves all value ranges, and clipping-
based quantization.

In MinMax quantization,

Xi
Q = αX̂i

Q = α⌊X
i
R − β

α
⌉+ β. (1)

Here XQ and XR denote the quantized and full-
precision variables, respectively. i refers to the i-th
element in the tensor. α is the scaling factor and β
is the zero-point value. For symmetric quantization,
α = max(|XR|)

2N−1−1
, β = 0. And for asymmetric quan-

tization, α = max(XR)−min(XR)
2N−1

, β = min(XR).

Compared to the MinMax Quantization, clip-
ping the outliers can help improve the precision
and allocate more bits to the intermediate values.
Thus, many recent work (Shen et al., 2020a; Zhang
et al., 2020) adopt clipping-based quantization for
transformer-based language models. The quantiza-
tion can be formulated as:

Xi
Q = αX̂i

Q = α⌊Clip(X
i
R − β

α
, 0, 1)⌉+β. (2)
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Figure 3: Overview of the quantized transformer in
LLM-QAT. We quantize all the weights and input acti-
vations in fully-connected linear layers. The KV cache
is also quantized if specified.

where the scale α and zero-point value β can be
calculated statistically or learned through gradients.

2.2.2 Quantization for LLMs
Quantization function We illustrate our quantized
transformer model in Figure 3. In line with the find-
ings in (Dettmers et al., 2022; Xiao et al., 2022),
we have also observed a significant presence of
outliers in both the weights and activations of large
language models (LLMs). These outliers have a
notable impact on the quantization process, as they
contribute to an increase in the quantization step
size while diminishing the precision of intermedi-
ate values. Nevertheless, clipping these outliers
during quantization proves detrimental to LLM per-
formance. During the initial stages of training, any
clipping-based method will lead to exceptionally
high perplexity scores (i.e., > 10000), causing a
substantial loss of information that proves to be
difficult to recover through fine-tuning. Therefore,
we choose to retain these outliers instead. More-
over, we find that in the model with the gated linear
unit (GLU), the activations and weights are mostly
symmetrically distributed. Based on our analysis
and empirical observations, we choose symmetric
MinMax quantization for both weights and activa-
tions:

Xi
Q = α⌊X

i
R

α
⌉, α =

max(|XR|)
2N−1 − 1

(3)

Here XQ denotes the quantized weights or activa-
tions and XR denotes the real-valued weights or
activations. To ensure efficient quantization, we
adopt the per-token activation quantization and per-
channel weight quantization. For a comprehensive
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evaluation of the different quantizer choices, we
provide the ablation study in Section 3.3.2.
Quantization-aware training for KV-cache In
addition to weight and activation quantization, the
key-value cache (KV cache) in large language
models (LLMs) also consumes a non-negligible
amount of memory. However, only a few previous
works have addressed the KV cache quantization in
LLMs, with the methods primarily limited to post-
training quantization(Sheng et al., 2023b). In our
study, we demonstrate that a similar quantization-
aware training approach used for activation quanti-
zation can be employed to quantize the KV cache.
We adopt per-token quantization in Eq. 3, given
that the key and value are generated token by token.
During the generation process, the current key and
value are quantized, and their corresponding scal-
ing factor is stored. During the training process for
QAT, we apply quantization to the entire activation
tensors of both the keys and values, as shown in
Figure 3. By integrating the quantization function
into the gradient calculation, we ensure effective
training using quantized key-value pairs.
Knowledge distillation We use cross-entropy
based logits distillation for training the quantized
student network from the full-precision pre-trained
teacher network:

LCE = − 1

n

∑

c

n∑

i=1

pTc (Xi) log(p
S
c (Xi)), (4)

Here i denotes the ith sample in the current batch
with n total sentences. c denotes the number of
classes and in our case, it equals the size of the
vocabulary. T and S are the teacher network and
student network, respectively.

As discussed in Section 2.1, in the data gener-
ation process, it is important to sample the next
token from distribution rather than always select-
ing the top-1 candidate. By doing so, the next
token does not necessarily represent the optimal la-
bel for training the student model, as the sampling
introduces inherent noise. Consequently, we pro-
pose to utilize the predictions from the pre-trained
model as soft labels, which provide more informa-
tive targets for guiding the training of the student
model. Detailed ablation study can be found in
Section 3.3.3.

3 Experiments

We assess the effectiveness of our approach by con-
ducting experiments on LLaMA-7B/13B/30B mod-

els and presenting results on various tasks. Specifi-
cally, we report the zero-shot performance on Com-
mon Sense Reasoning tasks such as BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap
et al., 2019), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), ARC (Clark
et al., 2018), and OBQA (Mihaylov et al., 2018).
We also assess the few-shot performance on Trivi-
aQA (Joshi et al., 2017) and MMLU (Hendrycks
et al., 2020) datasets, along with perplexity scores
on WikiText2 (Merity et al., 2016) and C4 (Raffel
et al., 2020) datasets.

3.1 Experimental Settings
In our quantized network training process, we ini-
tialize the model with a pre-trained model and
employ it as the teacher for knowledge distil-
lation. To optimize the model, we utilize the
AdamW (Loshchilov and Hutter, 2017) optimizer
with zero weight decay. Each GPU is assigned a
batch size of 1, and the learning rate is set to 2e-5,
following a cosine learning-rate decay strategy. For
data generation, we utilize the LLaMA-7B model,
and the maximum length of generated sequences
is set to 2048. We calculate the number of OPs by
OPs = MACs×Wbits ×Abits with the sequence
length equals to 2048.

3.2 Main Results
We consider three post-training quantization (PTQ)
methods, round-to-nearest (RTN), GPT-Q (Frantar
et al., 2022) and SmoothQuant (Xiao et al., 2022)
as baselines. We compare to them in several dif-
ferent settings, where the weights, activations, and
KV cache values are quantized to different levels
(denoted as W-A-KV). Different PTQ methods per-
form well in different settings, and we compare our
method to the best PTQ result in each setting.

Table 1, table 2 and table 6 (in Appendix) give
the comparisons of the proposed QAT methods
with SOTA PTQ methods for LLMs on Zero-shot
tasks on Common Sense Reasoning tasks, perplex-
ity evaluation on Wiki2 and C4 and few-shot exact
match on the MMLU and TriviaQA benchmarks
respectively. The perplexity evaluations verify
whether the quantized models are able to preserve
the output distribution of the model on a diverse
sample of its training domains. The zero-shot and
few-shot evaluations measure if the model’s capa-
bilities on downstream tasks are retained.

The trends in each table are similar. All meth-
ods tend to do well in the 8-bit setting across all
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Table 1: Zero-shot performance on Common Sense Reasoning tasks.
#Bits #OPs Size BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Method (W-A-KV) (×1015) (GB) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-7B 16-16-16 3.81 12.6 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 RTN 4-8-4 0.63 3.5 51.9 56.3 40.5 35.7 49.9 39.3 25.3 30.8 41.2
3 SmoothQuant 4-8-4 0.63 3.5 54.7 55.4 41.1 38.9 51.5 43.9 27.7 32.0 43.2
4 LLM-QAT 4-8-4 0.63 3.5 73.7 77.3 47.9 71.9 66.4 69.0 46.5 51.6 63.0
5 RTN 4-8-8 0.70 3.5 67.8 76.6 47.2 71.4 67.2 67.4 45.6 51.2 61.8
6 SmoothQuant 4-8-8 0.70 3.5 71.0 76.0 45.4 67.8 66.0 67.4 42.8 47.0 60.4
7 LLM-QAT 4-8-8 0.70 3.5 74.6 78.5 49.4 74.0 69.0 71.5 47.0 54.0 64.8
8 RTN 4-6-16 0.74 3.5 62.4 74.5 46.8 67.9 64.5 64.6 41.5 49.0 58.9
9 SmoothQuant 4-6-16 0.74 3.5 68.8 73.9 44.5 65.7 65.3 66.0 43.6 48.0 59.5
10 LLM-QAT 4-6-16 0.74 3.5 73.9 77.7 48.2 72.3 66.3 68.8 45.3 52.0 63.0
11 RTN 4-8-16 0.84 3.5 67.6 77.4 47.1 71.6 66.9 67.1 45.8 52.0 61.9
12 SmoothQuant 4-8-16 0.84 3.5 70.2 76.4 44.8 68.1 66.0 67.3 42.9 49.0 60.6
13 LLM-QAT 4-8-16 0.84 3.5 74.5 78.5 49.2 74.0 67.1 71.6 47.4 54.6 64.6
14 RTN 4-16-16 1.27 3.5 71.2 77.3 47.6 72.7 66.9 68.8 46.4 52.8 63.0
15 GPTQ 4-16-16 1.27 3.5 67.7 76.0 46.8 69.4 66.7 66.9 43.0 50.6 60.9
16 LLM-QAT 4-16-16 1.27 3.5 73.9 78.8 49.1 74.0 68.6 71.7 48.2 54.4 64.8
17 RTN 8-8-4 1.06 6.5 54.7 59.4 43.1 45.6 57.4 51.2 29.6 37.8 47.4
18 SmoothQuant 8-8-4 1.06 6.5 60.7 67.5 44.9 58.3 58.6 57.5 36.9 43.6 53.5
19 LLM-QAT 8-8-4 1.06 6.5 75.3 78.0 48.0 73.5 66.7 71.2 47.6 51.6 64.0
20 RTN 8-8-8 1.13 6.5 76.4 79.5 48.7 75.5 69.5 72.3 46.6 56.0 65.6
21 SmoothQuant 8-8-8 1.13 6.5 76.1 79.6 48.7 76.2 70.1 73.7 48.7 57.0 66.3
22 LLM-QAT 8-8-8 1.13 6.5 76.1 78.9 48.7 75.4 70.4 72.9 48.7 55.4 65.8
23 RTN 8-8-16 1.27 6.5 76.4 79.1 48.3 75.7 70.5 72.8 46.5 55.6 65.6
24 SmoothQuant 8-8-16 1.27 6.5 76.2 79.5 48.6 76.1 70.5 73.2 47.7 57.2 66.1
25 LLM-QAT 8-8-16 1.27 6.5 76.3 79.0 48.9 75.7 70.4 72.5 47.3 55.6 65.7
26 LLaMA-13B 16-16-16 7.26 24.2 78.1 80.0 50.5 79.2 73.6 74.5 52.6 55.0 68.0
27 RTN 4-8-4 1.11 6.5 54.0 59.2 41.9 41.6 55.9 45.0 27.0 33.2 44.7
28 SmoothQuant 4-8-4 1.11 6.5 63.0 65.3 42.2 50.6 54.1 49.6 30.3 34.2 48.7
29 LLM-QAT 4-8-4 1.11 6.5 72.0 76.8 49.2 73.6 66.5 69.3 46.9 52.8 63.4
30 RTN 4-8-8 1.22 6.5 76.2 78.8 49.3 76.2 69.9 72.2 50.7 56.8 66.3
31 SmoothQuant 4-8-8 1.22 6.5 72.5 77.1 47.2 74.3 69.5 67.4 43.3 53.4 63.1
32 LLM-QAT 4-8-8 1.22 6.5 77.5 79.1 48.6 77.5 70.6 73.0 51.9 56.2 66.8
33 RTN 4-6-16 1.24 6.5 71.8 74.1 47.7 70.2 65.1 69.3 44.1 45.6 61.0
34 SmoothQuant 4-6-16 1.24 6.5 70.6 76.3 47.9 73.1 68.5 65.9 43.3 52.6 62.3
35 LLM-QAT 4-6-16 1.24 6.5 75.4 79.3 48.4 76.5 69.2 73.1 48.6 53.4 65.5
36 RTN 4-8-16 1.44 6.5 76.8 79.1 49.1 76.3 70.5 72.6 49.8 56.6 66.4
37 SmoothQuant 4-8-16 1.44 6.5 72.5 77.9 47.6 74.2 69.7 68.2 45.0 54.2 63.7
38 LLM-QAT 4-8-16 1.44 6.5 77.7 79.3 48.4 77.5 70.6 73.5 53.0 57.4 67.2
39 RTN 4-16-16 2.27 6.5 77.4 79.1 49.2 76.8 70.5 72.6 51.2 54.2 66.4
40 GPTQ 4-16-16 2.27 6.5 78.0 79.8 49.2 77.7 72.6 73.2 50.6 55.4 67.1
41 LLM-QAT 4-16-16 2.27 6.5 77.7 79.4 49.1 77.7 71.5 72.8 52.0 53.8 66.7
42 RTN 8-8-4 1.95 12.4 65.8 66.2 43.9 56.7 57.3 58.2 34.5 42.6 53.2
43 SmoothQuant 8-8-4 1.95 12.4 66.6 71.7 44.8 61.1 61.0 63.4 38.3 43.6 56.3
44 LLM-QAT 8-8-4 1.95 12.4 74.9 78.3 48.0 75.7 68.9 71.9 51.1 54.2 65.4
45 RTN 8-8-8 2.06 12.4 77.8 80.0 50.8 78.9 72.6 74.5 52.1 55.6 67.8
46 SmoothQuant 8-8-8 2.06 12.4 78.3 80.3 50.8 79.2 73.2 74.8 52.4 55.4 68.0
47 LLM-QAT 8-8-8 2.06 12.4 78.7 80.4 50.1 79.1 73.2 74.8 51.7 55.4 67.9
48 RTN 8-8-16 2.27 12.4 77.8 80.1 50.6 78.9 73.5 74.9 51.9 56.4 68.0
49 SmoothQuant 8-8-16 2.27 12.4 78.7 80.0 50.6 79.1 73.4 74.8 51.4 56.0 68.0
50 LLM-QAT 8-8-16 2.27 12.4 78.5 80.4 50.6 79.0 72.8 74.2 52.9 55.8 68.0
51 LLaMA-30B 16-16-16 17.9 60.6 83.2 82.1 50.4 82.9 75.6 80 58 59.3 71.4
52 RTN 4-8-4 2.54 15.7 56.9 56.2 40.2 39.6 50.0 40.6 26.4 29.8 42.5
53 SmoothQuant 4-8-4 2.54 15.7 56.6 55.0 39.9 33.8 49.9 38.8 24.5 27.2 40.7
54 LLM-QAT 4-8-4 2.54 15.7 80.5 80.3 49.7 80.2 75.2 78.2 56.0 59.2 69.9
55 RTN 4-8-8 2.76 15.7 78.8 79.9 49.0 80.2 75.2 78.4 54.4 57.2 69.1
56 SmoothQuant 4-8-8 2.76 15.7 74.9 79.5 47.1 76.9 70.6 76.5 54.5 55.0 66.9
57 LLM-QAT 4-8-8 2.76 15.7 81.3 80.9 50.4 81.3 76.3 80.3 56.5 57.0 70.5
58 RTN 4-6-16 2.66 15.7 64.5 57.0 42.1 48.9 55.4 39.3 27.0 32.2 45.8
59 SmoothQuant 4-6-16 2.66 15.7 75.0 77.6 46.6 73.8 69.1 74.5 52.9 50.6 65.0
60 LLM-QAT 4-6-16 2.66 15.7 78.8 80.3 50.3 79.9 75.1 77.0 54.4 59.0 69.4
61 RTN 4-8-16 3.19 15.7 79.1 79.6 49.5 80.4 74.9 78.3 53.7 57.2 69.1
62 SmoothQuant 4-8-16 3.19 15.7 76.0 79.8 48.2 77.0 71.6 76.4 55.6 54.2 67.3
63 LLM-QAT 4-8-16 3.19 15.7 80.6 80.8 50.1 81.2 75.8 79.7 56.3 56.3 70.1
64 RTN 4-16-16 5.29 15.7 80.8 80.1 49.8 81.6 75.8 79.3 55.8 57.2 70.1
65 GPTQ 4-16-16 5.29 15.7 81.0 81.6 49.7 82.2 74.3 79.6 56.1 58.2 70.3
66 LLM-QAT 4-16-16 5.29 15.7 81.8 81.0 49.7 81.8 75.1 79.4 56.8 54.9 70.1
67 RTN 8-8-4 4.65 30.7 59.8 64.5 42.7 51.8 55.0 52.2 33.2 38.0 49.6
68 SmoothQuant 8-8-4 4.65 30.7 58.9 63.7 43.5 54.8 55.2 55.3 33.6 40.2 50.7
69 LLM-QAT 8-8-4 4.65 30.7 81.2 81.6 50.1 81.1 73.6 78.5 55.7 55.7 69.7
70 RTN 8-8-8 4.86 30.7 82.2 81.2 49.4 81.9 75.6 79.6 57.4 58.2 70.7
71 SmoothQuant 8-8-8 4.86 30.7 82.5 82.3 50.2 82.8 75.9 80.3 56.9 57.8 71.1
72 LLM-QAT 8-8-8 4.86 30.7 82.2 81.3 51.0 82.3 75.0 80.2 57.0 57.2 70.8
73 RTN 8-8-16 5.29 30.7 82.3 81.6 50.2 81.7 75.9 79.7 56.7 59.0 70.9
74 SmoothQuant 8-8-16 5.29 30.7 82.8 81.9 50.3 82.7 76.3 80.2 57.7 58.4 71.3
75 LLM-QAT 8-8-16 5.29 30.7 82.4 81.4 50.3 82.5 76.0 80.0 57.2 56.8 70.8

model sizes. This holds even when the KV cache
is also quantized to 8-bits, together with weights
and activations. However, when either of these
three values are quantized to less than 8-bits, PTQ
methods result in accuracy loss, whereas LLM-

QAT holds up much better. For example in the
8-8-4 setting, 30B LLM-QAT achieves an aver-
age zero-shot accuracy of 69.7, compared to 50.7
with SmoothQuant (Table 1, rows 68-69). The dif-
ference is smaller in the 4-8-8 setting, however,
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Table 2: Perplexity evaluation results on WikiText (Merity et al., 2016) and C4 (Raffel et al., 2020)
#Bits Perplexity Perplexity Perplexity

(W-A-KV) Method C4 (↓) Wiki2 (↓) Method C4 (↓) Wiki2 (↓) Method C4 (↓) Wiki2 (↓)
1 16-16-16 LLaMA-7B 7.2 10.4 LLaMA-13B 6.7 9.7 LLaMA-30B 6.0 7.0
2 4-8-4 RTN 55.1 151.4 RTN 25.0 103.6 RTN 8.2 8.9
3 4-8-4 SmoothQuant 81.1 163.6 SmoothQuant 26.0 60.1 SmoothQuant 10.6 12.0
4 4-8-4 LLM-QAT 8.6 11.6 LLM-QAT 7.6 10.2 LLM-QAT 7.3 7.7
5 4-8-8 RTN 8.4 13.9 RTN 7.3 12.5 RTN 7.4 8.2
6 4-8-8 SmoothQuant 9.1 13.7 SmoothQuant 8.8 12.5 SmoothQuant 8.7 9.8
7 4-8-8 LLM-QAT 7.5 11.2 LLM-QAT 6.8 10.0 LLM-QAT 6.9 7.5
8 4-6-16 RTN 10.5 20.0 RTN 11.3 32.7 RTN 11.4 15.4
9 4-6-16 SmoothQuant 9.9 14.7 SmoothQuant 9.1 13.6 SmoothQuant 8.7 12.5
10 4-6-16 LLM-QAT 7.7 10.8 LLM-QAT 7.1 10.5 LLM-QAT 7.3 7.9
11 4-8-16 RTN 8.6 14.0 RTN 7.5 12.5 RTN 7.4 8.2
12 4-8-16 SmoothQuant 9.1 13.7 SmoothQuant 8.7 12.6 SmoothQuant 8.7 9.8
13 4-8-16 LLM-QAT 7.4 10.9 LLM-QAT 6.8 10.0 LLM-QAT 6.9 7.5
14 4-16-16 RTN 8.5 14.4 RTN 7.3 11.9 RTN 7.0 7.7
15 4-16-16 GPTQ 8.4 17.4 GPTQ 6.8 10.7 GPTQ 6.2 7.9
16 4-16-16 LLM-QAT 7.4 10.9 LLM-QAT 6.5 9.6 LLM-QAT 6.5 7.3
17 8-8-4 RTN 42.1 105.1 RTN 15.4 43.4 RTN 7.0 7.8
18 8-8-4 SmoothQuant 30.8 77.9 SmoothQuant 13.9 40.9 SmoothQuant 6.7 7.5
19 8-8-4 LLM-QAT 7.6 10.2 LLM-QAT 7.5 11.3 LLM-QAT 6.8 7.4
20 8-8-8 RTN 7.1 10.7 RTN 6.6 10.0 RTN 6.3 7.3
21 8-8-8 SmoothQuant 7.0 10.5 SmoothQuant 6.5 9.8 SmoothQuant 6.1 7.1
22 8-8-8 LLM-QAT 7.0 10.3 LLM-QAT 7.0 9.4 LLM-QAT 6.3 7.1
23 8-8-16 RTN 7.3 10.7 RTN 6.8 10.1 RTN 6.3 7.3
24 8-8-16 SmoothQuant 7.0 10.5 SmoothQuant 6.5 9.7 SmoothQuant 6.1 7.1
25 8-8-16 LLM-QAT 7.0 10.3 LLM-QAT 6.5 9.5 LLM-QAT 6.3 7.1

LLM-QAT still outperforms the best PTQ method
(RTN in this case) by 1.4 points (rows 55, 57). In
the 4-8-4 setting, where both weights and the KV
cache are quantized to 4 bits, all PTQ methods
produce poor results, whereas LLM-QAT achieves
69.9, only trailing the full precision model by 1.5
points on average. LLM-QAT also works reason-
ably well for 6-bit activation quantization. While
this setting might not be currently practical due to
a lack of hardware support, it’s a promising data
point for sub-8-bit computation for LLMs.

One important question for practitioners is
whether to use a small model at full precision,
or a larger quantized model of similar inference
cost. While the exact trade-offs can vary based on
several factors, we can make several recommen-
dations based on our results. First, 8-bit quantiza-
tion should be preferred over smaller full-precision
models, and PTQ methods are sufficient for this
case. An 8-8-8 30B quantized model outperforms
a 13B model of similar size and should have lower
latency and higher throughput in practice. This
also holds for an 8-bit 13B model compared with a
16-bit 7B model. Furthermore, 4-bit models quan-
tized using LLM-QAT should be preferred over
8-bit models of similar size. For instance, a 4-8-4
LLM-QAT 30B outperforms an 8-bit LLaMA-13B,
and a 4-8-8 LLM-QAT 13B is better than an 8-
bit LLaMA-7B. As a result, we recommend 4-bit
LLM-QAT models for the best efficiency-accuracy
tradeoff.

3.3 Ablation
We conduct the ablation study regarding the data
choice, quantization methods, and knowledge dis-
tillation methods in Sections 3.3.1, 3.3.2 and 3.3.3,
respectively. We report both the perplexity scores
on WikiText2 (Merity et al., 2016)/C4 (Raffel et al.,
2020) datasets and the performance on zero-shot
common sense reasoning tasks.

3.3.1 Data Choice
In Table 3, we observe that WikiText (Merity et al.,
2016), which is constructed using text extracted
from Wikipedia, does not encompass all the infor-
mation utilized during pre-training. Consequently,
a model fine-tuned solely on WikiText tends to
overfit on this specific dataset and struggles to gen-
eralize well to other datasets. On the other hand, the
Crawled Corpus (C4) dataset (Raffel et al., 2020)
comprises hundreds of gigabytes of clean English
text collected from the web. Fine-tuning the model
on C4 yields reasonable transfer accuracy when
evaluated on the WikiText dataset. However, it ex-
hibits poor accuracy when tasked with zero-shot
inference tasks. More comprehensive comparisons
can be found in the appendix.

Compared to the existing data, the model fine-
tuned on generated data demonstrates superior gen-
eralizability, particularly in zero-shot tasks. More-
over, the data generated through sampling from
the distribution exhibits greater diversity compared
to the data generated without sampling. This en-
hanced diversity leads to significantly improved
performance across all tasks.
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Table 3: Effects of the finetuning data to the performance in downstream tasks. We use 4-bit weight 6-bit
activation LLaMA-7B for the experiments. We test three strategies for data generation. Generated data1 refers to
always picking the top-1 candidate without sampling. Generated data2 refers to sampling the next token from the
distribution. Generated data3 refers to the first 3~5 tokens being generated with deterministic selection while the
rest are stochastically sampled from the distribution.

C4 Wiki2 BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Finetuning Data (↓) (↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

1 (Pretrained Model) 7.2 10.7 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 Wiki2 10.1 5.5 46.9 74.3 45.2 72.4 65.7 67.2 45.0 47.8 58.1
3 Wiki103 9.6 5.2 45.9 74.4 46.4 71.4 66.1 67.5 46.3 49.8 58.5
4 C4 7.8 11.3 61.7 77.7 48.8 73.2 67.2 67.8 43.6 52.2 61.5
6 Generated data1 8.0 11.4 60.0 77.1 48.1 72.3 65.7 67.4 44.2 49.8 60.6
7 Generated data2 7.7 11.5 70.9 76.1 47.9 72.2 66.9 69.3 46.4 53.6 62.9
8 Generated data3 7.7 10.8 72.9 76.8 47.9 72.4 68.3 68.8 44.2 53.2 63.1

3.3.2 Quantization Function

We compare the no-clipping quantization method
with clipping-based methods in Table 4. Follow-
ing the practice in previous works (Liu et al.,
2022b, 2023), we use StatsQ (Liu et al., 2022a), a
statistically-calculated scaling factor for clipping-
based weight quantization and LSQ (Esser et al.,
2019), the learnable scaling factor for clipping-
based activation quantization. However, our
findings indicate that these two state-of-the-art
clipping-based quantization methods do not sur-
pass the performance achieved by the MinMax non-
clipping method. This observation reinforces the
argument that preserving the outliers is critical to
the performance of large language models.

Furthermore, we observe that for LLaMA mod-
els, the activations and weights exhibit predomi-
nantly symmetric distributions, which makes using
symmetric quantizers the best choice. It is impor-
tant to note, however, that this conclusion may not
hold true for other large language models, espe-
cially those incorporating GeLU layers.

3.3.3 Knowledge Distillation

Table 5 shows that different knowledge distillation
methods have a significant impact on the final ac-
curacy of fine-tuned models. Notably, utilizing the
next token alone as the label is sub-optimal due to
the inherent randomness and noise introduced by
sampling from a distribution of candidates during
the generation process. In contrast, logit distilla-
tion, which utilizes the complete logit distribution
prediction from the teacher model, leads to supe-
rior performance of fine-tuned models compared to
label-based training approaches. Interestingly, we
have observed that incorporating attention distilla-
tion or hidden layer distillation actually hampers
the performance. Consequently, we exclusively
employ logit distillation in all our experiments.

GPU days

Figure 4: Total computation cost over 5 million infer-
ences.

3.4 Training Cost Analysis

We use NVIDIA A100-PG509 40GB for data gen-
eration. On average, it takes 36 seconds to generate
one example with a generation length of up to 2048,
using a batch size of 1. We use 16 A100 GPUs for
data generation and it allows us to generate 100k
training examples in ~2.5 days. For fine-tuning, it
takes ~0.7 days ~0.8 days, and ~1.9 days to fine-
tune the 7B-model and, 13B model and 30B model,
respectively, with 8 A100 80G GPUs and batch size
1 per GPU on 100k generated examples. This train-
ing cost is substantially larger than PTQ, which
takes 0.1 days to train. However, these costs are all
insignificant when amortized over the cost of infer-
ence over millions of requests. For instance, over
5 million inferences, a full precision 30B model
would take 4280 A100 GPU days, while PTQ 8-8-
8 would take 2743 days, and a comparable accu-
racy 4-8-8 LLM-QAT model would take 586 days1.
These costs are pictured in Figure 4.

18-bit weight 8-bit activation quantization results in
1.56x speedup, and 4-bit weight 8-bit activation quantization
achieves 7.3x speedup according to Xiao et al. (2022); Bai
et al. (2022)
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Table 4: Ablation study on the effects of the quantization methods on LLaMA-7B model. The quantization level is
set to 4-bit weight and 8-bit activation.

C4 Wiki2 BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Weight Activation (↓) (↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

1 (Pretrained Model) 7.2 10.7 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 Clipping Clipping 9.0 11.9 64.9 66.8 43.6 63.5 56.1 51.0 31.4 33.8 51.4
3 MinMax Clipping 9.4 12.8 63.5 62.4 42.4 61.2 52.9 45.6 29.6 33.8 48.9
4 Clipping MinMax 8.2 11.0 71.7 75.1 43.7 69.5 58.9 62.6 35.2 37.8 56.8
5 MinMax MinMax 7.4 10.9 74.8 77.8 48.6 73.6 69.0 69.7 45.8 55.8 64.4
6 Asym Asym 7.3 10.4 75.0 78.4 48.0 73.9 69.3 71.9 45.7 52.6 64.3
7 Sym Asym 7.4 11.0 72.7 77.9 48.8 73.3 67.9 69.2 45.2 56.0 63.9
8 Asym Sym 7.4 10.9 73.3 78.4 48.0 73.9 68.9 71.4 46.4 54.0 64.3
9 Sym Sym 7.4 10.9 74.8 77.8 48.6 73.6 69.0 69.7 45.8 55.8 64.4

Table 5: Ablation study on the knowledge distillation choices on LLaMA-7B model with generated data. The
quantization level is set to 4-bit weight and 6-bit activation.

C4 Wiki2 BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Method (↓) (↓) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)

1 (Pretrained Model) 7.2 10.4 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 Label 8.1 11.9 69.4 77.3 48.7 72.1 67.1 67.6 45.4 51.4 62.4
3 Label + Attention 8.8 18.6 70.2 75.3 47.6 68.9 67.2 65.6 42.6 51.2 61.1
4 Label + Hidden 10.9 16.2 61.0 53.5 41.1 32.6 50.2 25.8 23.1 25.0 37.7
5 Label + Logits 7.8 11.0 70.8 77.3 48.3 72.5 66.7 68.2 46.5 55.4 63.2
6 Logits 7.7 10.8 72.9 76.8 47.9 72.4 68.3 68.8 44.2 53.2 63.1
7 Logits + Attention 7.9 12.2 73.2 74.6 47.2 69.1 65.1 64.8 42.1 52.8 61.1
8 Logits + Hidden 22.3 52.6 38.0 50.4 38.6 25.6 50.5 26.3 24.3 25.8 34.9
9 Logits + Hidden + Attention 21.9 46.0 55.0 47.8 39.0 33.4 48.5 29.7 26.4 25.8 38.2

4 Related Works

Quantization Neural network quantization is
proved to be a valuable tool in compressing model
size and reducing storage consumption. Classic
quantization methods, such as MinMax quantiza-
tion (Jacob et al., 2018; Krishnamoorthi, 2018),
Learned step-size quantization (Esser et al., 2019),
PACT (Choi et al., 2018), N2UQ (Liu et al., 2022a)
and etc, have primarily been developed for convolu-
tional neural networks. While several recent works
have explored language model compression, they
are mostly focused on smaller models (Zafrir et al.,
2019; Fan et al., 2020; Shen et al., 2020b; Zadeh
et al., 2020; Bai et al., 2021; Qin et al., 2021; Liu
et al., 2022b) like BERT (Devlin et al., 2019) or
BART (Lewis et al., 2019). For large language mod-
els (LLMs), the available quantization methods are
mostly limited to post-training quantization (Xiao
et al., 2022; Yao et al., 2022; Frantar et al., 2022;
Sheng et al., 2023a), due to the lack of accessible
training data or the prohibitive resource require-
ments for fine-tuning on the entire pre-training
dataset. To the best of our knowledge, no pre-
vious work has addressed the specific challenge
of quantization-aware training for LLMs. The
compression capabilities of state-of-the-art PTQ
methods are confined to W8A8 (Xiao et al., 2022)
or W4A16 (Frantar et al., 2022). A recent work
introduced floating-point quantization to enable
W4A8 quantization (Wu et al., 2023), however, this
approach necessitates hardware customization for
floating-point computation. In contrast, LLM-QAT

attains a level of accuracy on par with full-precision
models with simple W4A8 integer quantization.
Data generation Data generation for QAT remains
a relatively unexplored field of research. While
there are several works in the vision domain fine-
tuning student networks (Yin et al., 2020; Liu et al.,
2022c; Cai et al., 2020) using noise-to-data genera-
tion from pre-trained teacher models, these meth-
ods mainly focus on image data. In the language
domain, a few previous work use human-defined
prompts to elicit responses from GPT models for
fine-tuning. For example, Vicuna (Zheng et al.,
2023) utilized user-uploaded ShareGPT data for
instruction fine-tuning, while Alpaca (Taori et al.,
2023) relied on predefined human prompts with
careful balance in each category to ensure diversity.
In contrast, our method eliminates the need for hu-
man prompts or user data. A single random initial
token allows LLMs to autonomously generate data
suitable for QAT finetuning. To the best of our
knowledge, this is not studied in existing literature.

5 Conclusion and Limitations

We proposed data-free quantization-aware training
for LLMs and showed accurate, 4-bit quantization
is possible using this technique. Given the general-
ity of the training-data-agnostic distillation method,
and the growing cost of LLM deployments, we ex-
pect our method to have wide applicability. For
instance, the method could also be used for models
trained in several stages, e.g. with instruction tun-
ing or reinforcement learning (Ouyang et al., 2022).
We leave this investigation to future work.
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A Appendix

A.1 Few-shot Evaluation Results

Table 6 presents the few-shot performance of the quantized model on the MMLU (Hendrycks et al., 2020)
and TriviaQA (Joshi et al., 2017) benchmarks.

Table 6: 5-shot few-shot exact match performance on the TriviaQA dataset (Joshi et al., 2017) and 5-shot accuracy
on Massive Multitask Language Understanding (MMLU) dataset (Hendrycks et al., 2020).

MMLU
Humanities STEM Social Sciences Other Average TriviaQA

Method #Bits Size (GB) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-7B 16-16-16 12.6 33.5 30.6 38.4 39.1 35.2 57.0
2 RTN 4-8-4 3.5 23.9 26.8 26.5 24.4 25.2 0.3
3 SmoothQuant 4-8-4 3.5 24.3 27.5 26.2 24.6 25.5 3.9
4 LLM-QAT 4-8-4 3.5 25.6 24.3 24.0 27.8 25.5 42.6
5 RTN 4-8-8 3.5 30.1 25.6 27.5 32.5 29.1 44.5
6 SmoothQuant 4-8-8 3.5 27.1 28.9 28.0 31.9 28.7 39.6
7 LLM-QAT 4-8-8 3.5 30.0 27.4 28.4 34.2 30.0 50.8
8 RTN 4-6-16 3.5 27.0 26.0 25.8 27.0 26.5 36.0
9 SmoothQuant 4-6-16 3.5 26.2 27.0 27.5 29.9 27.5 36.2
10 LLM-QAT 4-6-16 3.5 28.9 27.3 31.6 33.0 30.0 49.0
11 RTN 4-8-16 3.5 30.2 25.9 26.8 32.0 28.9 44.9
12 SmoothQuant 4-8-16 3.5 26.9 28.6 29.6 32.0 29.0 40.0
13 LLM-QAT 4-8-16 3.5 30.3 28.1 30.3 34.5 30.8 50.8
14 RTN 8-8-4 6.5 24.2 27.3 25.8 24.5 25.3 14.8
15 SmoothQuant 8-8-4 6.5 24.4 26.4 25.6 24.2 25.1 32.8
16 LLM-QAT 8-8-4 6.5 28.3 25.5 28.7 30.4 28.2 46.2
17 RTN 8-8-8 6.5 34.3 31.9 38.5 40.5 36.1 56.6
18 SmoothQuant 8-8-8 6.5 33.2 31.5 38.5 38.9 35.3 56.7
19 LLM-QAT 8-8-8 6.5 32.9 29.7 37.9 37.9 34.4 56.1
20 RTN 8-8-16 6.5 34.4 31.8 39.3 39.9 36.1 56.6
21 SmoothQuant 8-8-16 6.5 33.0 30.5 38.7 38.8 35.0 56.8
22 LLM-QAT 8-8-16 6.5 32.2 29.4 37.0 37.6 33.8 56.1
23 LLaMA-13B 16-16-16 24.2 44.4 36.2 54.3 53.3 46.7 63.7
24 RTN 4-8-4 6.5 25.5 24.9 24.3 26.5 25.3 22.2
25 SmoothQuant 4-8-4 6.5 25.6 22.8 23.4 26.4 24.7 32.7
26 LLM-QAT 4-8-4 6.5 29.4 28.5 31.9 35.8 31.1 54.3
27 RTN 4-8-8 6.5 38.3 32.7 45.3 46.4 40.4 57.9
28 SmoothQuant 4-8-8 6.5 30.9 28.6 33.4 37.1 32.3 46.6
29 LLM-QAT 4-8-8 6.5 38.7 32.8 47.1 47.7 41.2 59.3
30 RTN 4-6-16 6.5 28.5 27.8 29.5 32.0 29.3 39.6
31 SmoothQuant 4-6-16 6.5 30.3 29.6 33.5 37.1 32.4 44.8
32 LLM-QAT 4-6-16 6.5 37.4 33.4 45.1 46.0 40.1 57.7
33 RTN 4-8-16 6.5 38.7 32.6 45.2 45.8 40.3 57.9
34 SmoothQuant 4-8-16 6.5 30.3 27.8 34.3 37.5 32.2 46.6
35 LLM-QAT 4-8-16 6.5 40.1 32.4 47.6 48.0 41.8 59.8
36 RTN 8-8-4 12.4 27.8 26.2 27.0 29.6 27.6 44.3
37 SmoothQuant 8-8-4 12.4 27.8 28.1 28.6 32.3 29.1 49.6
38 LLM-QAT 8-8-4 12.4 34.1 29.3 38.7 40.7 35.5 58.8
39 RTN 8-8-8 12.4 44.2 35.6 52.2 52.5 45.9 62.9
40 SmoothQuant 8-8-8 12.4 44.5 36.1 53.5 53.3 46.6 63.4
41 LLM-QAT 8-8-8 12.4 43.5 36.1 52.6 52.5 45.8 63.3
42 RTN 8-8-16 12.4 44.3 34.9 51.7 53.0 45.7 63.1
43 SmoothQuant 8-8-16 12.4 44.5 36.4 53.7 53.4 46.7 63.4
44 LLM-QAT 8-8-16 12.4 43.6 36.1 53.8 53.2 46.3 63.4
23 LLaMA-30B 16-16-16 60.6 55.8 46.0 66.7 63.4 57.8 69.9
46 RTN 4-8-4 15.7 24.4 26.2 27.2 26.4 25.9 19.2
47 SmoothQuant 4-8-4 15.7 23.9 27.5 23.2 24.1 24.6 7.5
48 LLM-QAT 4-8-4 15.7 47.6 40.4 55.9 54.5 49.3 63.5
49 RTN 4-8-8 15.7 51.0 43.6 62.2 60.6 53.9 66.8
50 SmoothQuant 4-8-8 15.7 35.2 35.1 46.9 45.2 40.0 57.9
51 LLM-QAT 4-8-8 15.7 52.2 44.3 61.4 61.0 54.4 65.9
52 RTN 4-6-16 15.7 29.5 31.3 32.1 36.2 32.0 39.3
53 SmoothQuant 4-6-16 15.7 31.6 34.3 43.4 42.3 37.2 56.7
54 LLM-QAT 4-6-16 15.7 47.7 41.7 58.9 57.5 51.0 64.2
55 RTN 4-8-16 15.7 50.9 44.0 62.8 61.3 54.2 67.1
56 SmoothQuant 4-8-16 15.7 35.6 36.2 48.6 45.7 40.8 58.5
57 LLM-QAT 4-8-16 15.7 52.8 44.4 63.6 61.2 55.1 67.1
58 RTN 8-8-4 30.7 26.1 27.6 28.6 29.0 27.6 30.2
59 SmoothQuant 8-8-4 30.7 27.9 29.1 31.7 33.1 30.1 38.9
60 LLM-QAT 8-8-4 30.7 49.7 42.2 60.8 59.7 52.7 67.9
61 RTN 8-8-8 30.7 55.6 45.8 66.3 63.4 57.5 70.4
62 SmoothQuant 8-8-8 30.7 56.0 46.0 67.3 64.1 58.0 70.2
63 LLM-QAT 8-8-8 30.7 56.5 47.7 66.9 64.2 58.5 69.4
64 RTN 8-8-16 30.7 56.3 45.6 66.8 63.7 57.8 70.3
65 SmoothQuant 8-8-16 30.7 56.0 46.7 67.5 63.8 58.2 70.3
66 LLM-QAT 8-8-16 30.7 54.9 45.9 66.7 63.6 57.4 70.0

478



Table 7: Zero-shot performance on Common Sense Reasoning tasks for quantizing LLaMA-v2 Model.
Size BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Method #Bits (GB) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-v2-7B 16-16-16 12.6 75.0 51.2 77.5 78.8 48.2 75.9 59.4 69.7 67.0
2 RTN 4-8-4 3.5 65.6 41.5 60.2 71.3 44.9 65.0 45.6 60.3 56.8
3 SmoothQuant 4-8-4 3.5 65.4 41.9 63.1 72.4 43.1 64.9 43.0 56.3 56.3
4 LLM-QAT 4-8-4 3.5 66.6 42.7 65.3 73.4 44.3 65.1 49.0 60.8 58.4
5 RTN 4-8-8 3.5 69.8 45.6 64.6 76.5 47.0 71.8 52.4 66.4 61.8
6 SmoothQuant 4-8-8 3.5 69.1 46.6 68.0 77.2 44.8 70.1 51.2 67.1 61.8
7 LLM-QAT 4-8-8 3.5 69.8 47.5 71.1 76.5 46.8 71.2 53.0 67.5 62.9
8 RTN 4-8-16 3.5 69.4 47.1 63.8 76.7 47.0 71.8 53.2 66.4 61.9
9 SmoothQuant 4-8-16 3.5 69.2 47.3 65.6 77.2 44.9 70.3 50.2 66.4 61.4
10 LLM-QAT 4-8-16 3.5 70.7 47.0 70.7 76.6 47.4 71.4 54.8 68.2 63.3
11 RTN 4-16-16 3.5 70.2 47.4 64.7 76.8 47.1 72.5 54.0 66.9 62.5
12 SmoothQuant 4-16-16 3.5 68.8 45.6 67.2 77.6 44.8 70.2 51.8 65.9 61.5
13 LLM-QAT 4-16-16 3.5 71.2 48.2 71.4 76.8 47.1 72.1 54.6 67.5 63.6
14 RTN 8-8-4 6.5 72.6 49.7 73.0 75.7 48.5 73.0 54.6 66.5 64.2
15 SmoothQuant 8-8-4 6.5 74.6 46.4 73.1 77.3 48.5 74.0 55.8 68.1 64.7
16 LLM-QAT 8-8-4 6.5 72.7 47.9 70.6 77.2 48.3 72.3 57.5 66.0 64.1
17 RTN 8-8-8 6.5 75.5 49.9 75.4 78.4 48.8 75.8 57.2 69.6 66.3
18 SmoothQuant 8-8-8 6.5 74.7 49.7 76.7 78.6 48.4 76.0 58.4 69.1 66.5
19 LLM-QAT 8-8-8 6.5 74.5 50.0 74.7 79.2 48.5 75.2 57.7 69.3 66.1
20 RTN 8-8-16 6.5 75.5 50.3 76.3 79.1 48.8 75.6 59.4 69.3 66.8
21 SmoothQuant 8-8-16 6.5 74.7 50.3 77.0 78.9 47.8 75.9 58.4 69.7 66.6
22 LLM-QAT 8-8-16 6.5 75.0 50.5 74.5 79.1 48.4 75.3 57.3 69.7 66.2

Table 8: Explore 4-bit weight 4-bit activation quantization with LLM-QAT.
BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Method #Bits (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑) (↑)
1 LLaMA-7B 16-16-16 76.8 79.3 48.6 76.1 70.0 73.0 48.0 57.6 66.2
2 RTN 4-4-16 51.3 49.8 36.9 26.2 47.9 25.7 24.5 31.2 36.7
3 SmoothQuant 4-4-16 54.1 62.8 41.8 41.5 52.6 50.6 32.9 36.4 46.6
4 LLM-QAT 4-4-16 57.9 47.5 39.9 25.8 47.6 27.2 25.8 29.4 37.6
5 LLM-QAT + SmoothQuant 4-4-16 63.5 64.3 41.8 55.6 52.9 50.3 30.2 35.0 49.2
6 LLM-QAT + group-wise quant (4 channel per group) 4-4-16 65.5 74.0 47.7 68.1 65.4 66.5 43.9 52.4 60.4
7 LLM-QAT + group-wise quant (1 channel per group) 4-4-16 69.1 75.5 47.4 70.5 66.9 67.6 46.8 50.2 61.7
8 RTN 4-4-4 50.2 50.5 37.1 26.0 49.6 26.1 24.4 28.6 36.6
9 SmoothQuant 4-4-4 49.1 49.8 39.1 27.4 48.0 30.4 25.8 29.2 37.4
10 LLM-QAT 4-4-4 61.3 51.5 39.2 31.1 51.9 27.9 23.9 29.4 39.5
11 LLM-QAT + SmoothQuant 4-4-4 62.4 55.9 40.9 47.8 50.6 35.5 26.4 34.6 44.3
12 LLM-QAT + group-wise quant (4 channel per group) 4-4-4 60.3 66.3 45.4 56.8 57.1 54.9 34.1 38.6 51.7
13 LLM-QAT + group-wise quant (1 channel per group) 4-4-4 67.9 74.2 46.6 66.8 59.4 63.9 41.3 48.8 58.6

A.2 Zero-shot Reasoning Performance on LLaMA-v2

We conducted experiments on the LLaMA-v2 structure (Touvron et al., 2023b), and the results in Table 7
consolidate the claim that LLM-QAT consistently enhances the performance of quantized models in ultra
low-bit settings

A.3 Exploring the Limits: 4-bit Weight 4-bit Activation Quantization

We further explore the lower-bit quantization of 4-bit weight and 4-bit activation (W4A4). The results
show that the W4A4 quantization is challenging for LLMs. Post-training quantization sees ∼ 30 points
degradation. Adding LLM-QAT together with smoothquant can recover 12.5 points and 7.7 points for
W4A4KV16 and W4A4KV4 settings, respectively.

Furthermore, we delved into the potential of combining the group-wise quantization (Shen et al., 2020a;
Sheng et al., 2023a) with LLM-QAT. The results in Table 8 unveiled that group-wise quantization with 1-
channel per group managed to achieve less than 8 points accuracy drop on the W4A4KV4 setup compared
to full-precision, which was infeasible in any of the previous works. Nevertheless, it is important to note
that implementing this group-wise quantization method may necessitate specialized kernel design to fully
realize its potential for actual speedup (Shen et al., 2020a; Cai et al., 2020).

A.4 Evaluation Benchmarks

A.4.1 Zero-shot Common Sense Reasoning tasks
BoolQ (Clark et al., 2019) is a reading comprehension dataset of naturally occurring yes/no questions.
Each example consists of a question (Q), an excerpt from a passage (P), and an answer (A) with an
explanation added for clarity.
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PIQA (Bisk et al., 2020), short for Physical Interaction: Question Answering, is a benchmark for
evaluating and studying physical commonsense understanding in natural language models.

SIQA (Sap et al., 2019) aims to measure the social and emotional intelligence of computational models
through multiple choice question answering (QA).

HellaSwag (Zellers et al., 2019) is a benchmark for physically situated commonsense natural language
inference. It consists the four-way multiple-choice problems that are trivial for humans (> 95% accuracy),
but challenging for the language models.

WinoGrande (Sakaguchi et al., 2021) is a benchmark for commonsense reasoning. It comprises a set of
273 expert-crafted pronoun resolution problems originally designed to be unsolvable for statistical models
that rely on selectional preferences or word associations.

ARC (Clark et al., 2018), the AI2 Reasoning Challenge, contains a collection of 7787 natural science
questions. It is partitioned into a Challenge Set and an Easy Set, where the Challenge Set contains only
questions answered incorrectly by both a retrieval-based algorithm and a word co-occurrence algorithm.

OBQA (Mihaylov et al., 2018) is a dataset of about 6000 questions for open book question answering.
The task focuses on the challenge of combining a corpus of provided science facts (open book) with
external broad common knowledge.

A.4.2 Few-shot Tasks

TriviaQA (Joshi et al., 2017) is a closed-book question answering benchmark. It contains over 650K
question-answer evidence triples, that are derived by combining 95K Trivia enthusiast authored question-
answer pairs with on average six supporting evidence documents per question.

MMLU (Hendrycks et al., 2020), the Massive Multitask Language Understanding(MMLU) bench-
mark (Hendrycks et al., 2020), consists of multiple choice questions covering various domains of knowl-
edge, including humanities, STEM and social sciences.

A.5 Generation Tasks

WikiText2 (Merity et al., 2016) is a collection of over 100 million tokens extracted from the set of verified
Good and Featured articles on Wikipedia.

C4 (Raffel et al., 2020), abbreviate for Colossal Clean Crawled Corpus. Common Crawl2 is a publicly-
available web archive that provides “web extracted text” by removing markup and other non-text content
from the scraped HTML files. C4 filters Common Crawl’s web-extracted text and produces a collection of
text that comprises clean and natural English text.

A.6 Generated Data from LLaMA-7B

In this section, we show some examples of the generated data obtained through the next token generation
with LLaMA-7B model.

2http://commoncrawl.org/
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\nSincerely, I\u2019m sending for your help right now.\nI\u2019m currently facing a rather
challenging situation.\nMy wife and me have been living and working in the same country
for a couple of years.\nHowever, after we\u2019ve seen a couple of movies together, we
found out that we have different tastes in movies.\nMy wife is always watching melancholy
(soporific, slow-moving) drama movies, while I prefer thrillers or action movies.\nIt would
be great if we could both keep our personal wishes, yet make sure we have something to
discuss about afterwards.\nDo you think there\u2019s a nice web site, a movie club, or so,
which helps us choose movies to watch as a couple?\nPlease, please help me out of this
situation!\nA: Thanks for asking for my help. If you can, please do watch some movies
together before choosing the movies that are really suitable for each of you.\nMovies have
different styles of story telling, and some can be slow-moving. It is up to the audience to
decide what kind of movies they want to see. You are just the same as other people who
might prefer watching some movies at home while the other one loves to watch movies at a
movie theater.\nIf there exist some websites or movie clubs, why don\u2019t you try taking
a look at it. However, it is up to you to find out which movies are suitable for your couple,
so the movie club, or the website, can only give some ideas for your reference.\nSincerely,
hope my answer could help you with your issue.\n- I am new to ALT life and have been
living here for three month. We would love to join some clubs and have asked many people
with no success. I don’t understand why some people are unwilling to help.\n- It’s always
best to ask people at the local supermarket or caf\u00e9 for any events coming up in the
area. The best way to find out is to ask.\n- I’d rather not answer at this stage.\n- I like this
place, and I’d like to stay here, but I am sure there is more to see and do, so hopefully if I
try hard enough I will be able to find out more.\n- I think it’s a bit difficult living away from
home, but having family and friends around helps a lot.\n- We’d like to play baseball, is
there any baseball or softball club, we are new to your country but quite enthusiastic.\n- We
have a large number of volunteer groups that actively help the local community, and the
local government sets up new programmes all the time."
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In the mid-20th century, there was growing awareness that in a large number of industrial
countries the population was aging. This awareness, along with advances in social security
in many countries and a sense of urgency to avoid future generations of poor, has led to
social policy being implemented that targets the elderly. The elderly often have a special
status and enjoy particular social benefits. Such benefits include a higher age entitlement
threshold, higher pensions, early-retirement benefits, employment quotas, and free or
subsidized health care. In addition, in some countries the elderly are exempt from federal
and, in some cases, from state taxes. \n Since most governments have set limits on their
ability to pay out more in social security and health care benefits to any one group, such
benefits are generally reserved for the retired and the disabled. Accordingly, elderly care for
the mentally disabled, infirm, and cognitively impaired has taken on particular importance,
as has care for the homeless. In addition, those who are economically active can also benefit
from programs, although there is the perception that the economically active are less in need
of care assistance, because their families often take care of them. Elderly care is generally
provided on an unpaid basis, although those in need of care may have to sell their homes
because of the high cost of care.\nSee also: Economy; Old Age and Retirement Welfare
Systems; Unemployment; and Unemployment and Employment Security Systems.\nBell,
Ian R. S., The Growing Crisis of Old Age. London: Pall Mall Press, 1913.

When my brother returned from abroad, he went with his wife to the motherland. They
had many elder brothers around there, so that we all went with them to my parents\u2019
home. I, being the youngest, went first. My brother, seeing the dowry that I brought with
me, laughed. He was very proud. \u2018This girl is from my sister; she is the same as my
sister. Why should I have her?\u2019 he said to them. But at that time my father was ill; he
lay stretched on a bed before us. \u2018This is my sister; she is my sister. I did not give her
to you; why should I allow you to kill my sister?\u2019 the father said to my brother. His
mother said, \u2018I shall put this girl\u2019s hand in your hand. When you wish to give
it away, it will be like your sister\u2019s.\u2019 My brother thought, \u2018There surely
cannot be two sisters.\u2019 I told him, \u2018The old man will die soon. I have brought
him his dowry of ten yens of silver. It is no small gift for him. If I do you the favour now,
will you not have respect for the father when he is dead and gone?

a town, and the largest inland city of the ancient Aztlan (Aztatlan, Azatlan) located near
the modern ruin of Santa Anas, Sonora, Mexico.\nAtsa was a settlement among the 13
Tamoanchan cities of the Nahua people that established their settlement in Northern Mexico
by about 1000 A.D. The city of Atsa (its people Atsatla) belonged to ẗhe twelve tribes
of Tamoanchan,̈ which may be read in the Aztec codices as T̈lascallaänd which are the
T̈lascalanp̈eoples of the 13 cities or a confederation of peoples that were among the dominant
rulers of the Valley of Mexico, and of western Mexico in general, during the pre-eminent
period of Aztec civilization.\nAtsa as well as the other Tamoancan cities of the Aztecs, is
said to be on a plain of jade and silver and to have a number of large, flat-roofed buildings.
These buildings are described as being in ruins in 1519, during Hernan Cortes’s first visit
to Mexico. Although it is not known if the Tamoancan cities were named before or after
contact with the Spaniards, it may be that the descriptions are only describing Aztec ideas
of the 13 cities by its inhabitants. Atsa is said to be located at a point where a landform
resembling a large lake (a m̈ountain)̈, was formed at some point in their past that has since
dried. It is here that it is said the Atsatla people established their community.
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This article appeared in the Ceylon Today on 24th January 2016.\nI have been an Anglican
Priest and a member of various committees in the Ceylon Evangelical Lutheran Church
(CELC) for many years. I have observed that most of the CELC clergy and Laity are
engaged in one or the other form of mission; whether as pastor, deacon, Sunday School
teacher, a member of the Christian Education Council (CEC), Church Council or its
equivalent. But do we realise the full significance of the words of the Apostle Paul in the
first Reading?\nThe readings for this Sunday continue in Paul\u2019s second letter to the
church in Corinth, where he warns the Christians against the excesses of the Eucharist.
He warns them not to drunkenness during the Eucharist. He also writes: \u201cDo not,
for the sake of food, destroy the work of God\u201d (6:12).\nThese were the words Paul
used in his letter to his beloved Church: \u201cEat anything God has created to make you
healthy.\nYou should not feel guilty about eating any of these foods, but you should not eat
them if they cause other people to stumble\u201d (Romans 14:14-23, CEB).\nIf we want
to do God\u2019s will, we will learn what pleases him. (Eph. 5:10). If we want others to
respect God\u2019s law, then we must avoid even the appearance of sin (1 Thess. 5:22). In
other words, we must seek to please God in all of our actions.\nAs Catholics we celebrate
the Holy Mass by taking communion of the Bread and Wine, in the name of the Father,
the Son and the Holy Spirit to remind us of our call to love and serve one another.\nSt.
Paul said: \u201cA little yeast spreads through the whole batch of dough\u201d (Gal. 5:9).
Christians should celebrate God\u2019s love in a special way. We are called to live for
the next generation. If we drink to excess at the Eucharist it ruins the lives of our children.
\u201cA little yeast\u201d spreads quickly through the family: an immoral step, a broken
marriage, divorce and abuse: All these are examples of the \u201clittle yeast\u201d that
destroys families.\nBut there\u2019s more. \u201cBecome sober, and stop sinning. Then
some apostle will not be wrongly accused of being responsible for sinning. Anyone who has
been stealing must steal no longer\u201d (v. 8). Our call as Christians is to lead exemplary
lives. As such, we must act in accordance with our commitment to the \u201cLove of God
and of our Neighbour\u201d. We are called to work with integrity. We are called to give to
society. If a person is addicted to any alcoholic beverage or to any other type of drug, it will
be difficult for him or her to lead a moral life.\nIt is also said that the words of the Apostle
Paul in the First Reading \u201care still being applied today\u201d!\nOur forefathers who
were the followers of John Wesley the Founder of Methodism made this famous saying
to describe a Methodist: \u2018 A Methodist will find his way home from the most God
forsaken, lawless, brutalized and degraded part of the earth, to the humble home of his
childhood or his God: To find his way when the sun sets and the sky is filled with dense
shades of night; or on the banks of the Red river, amid the solitudes of the Mexican desert,
or in the dreary solitude of the frozen wastes of the Arctic Ocean\u2026\u201d.\nIf we
ask ourselves some important question we are compelled to ask such question whether
this is true for every individual member of the churches, whether it is true for the clergy
or laity.\nThe Methodist Church in the United Kingdom, for example, is known as the
\u201cMother Church\u201d. In 2014, a survey revealed that 21% of the British public was
unaffiliated to any religion. But 50% of the people in England and Wales were prepared to
\u201ctry and become a Christian\u201d if invited, despite not going to church."

A.7 Broader Impact
We propose a model compression technique that reduces the memory footprint of large language models,
enabling their deployment on embedded devices. This technique has the potential to decrease energy con-
sumption for end users and lower costs for companies running language models at scale. We acknowledge
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the potential risks associated with the malicious use of large language models by third parties. Therefore,
we are dedicated to maintaining the techniques we have developed to ensure responsible usage of these
models.
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