Zihao Fu


2020

pdf
Partially-Aligned Data-to-Text Generation with Distant Supervision
Zihao Fu | Bei Shi | Wai Lam | Lidong Bing | Zhiyuan Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The Data-to-Text task aims to generate human-readable text for describing some given structured data enabling more interpretability. However, the typical generation task is confined to a few particular domains since it requires well-aligned data which is difficult and expensive to obtain. Using partially-aligned data is an alternative way of solving the dataset scarcity problem. This kind of data is much easier to obtain since it can be produced automatically. However, using this kind of data induces the over-generation problem posing difficulties for existing models, which tends to add unrelated excerpts during the generation procedure. In order to effectively utilize automatically annotated partially-aligned datasets, we extend the traditional generation task to a refined task called Partially-Aligned Data-to-Text Generation (PADTG) which is more practical since it utilizes automatically annotated data for training and thus considerably expands the application domains. To tackle this new task, we propose a novel distant supervision generation framework. It firstly estimates the input data’s supportiveness for each target word with an estimator and then applies a supportiveness adaptor and a rebalanced beam search to harness the over-generation problem in the training and generation phases respectively. We also contribute a partially-aligned dataset (The data and source code of this paper can be obtained from https://github.com/fuzihaofzh/distant_supervision_nlg) by sampling sentences from Wikipedia and automatically extracting corresponding KB triples for each sentence from Wikidata. The experimental results show that our framework outperforms all baseline models as well as verify the feasibility of utilizing partially-aligned data.

pdf
Dynamic Topic Tracker for KB-to-Text Generation
Zihao Fu | Lidong Bing | Wai Lam | Shoaib Jameel
Proceedings of the 28th International Conference on Computational Linguistics

Recently, many KB-to-text generation tasks have been proposed to bridge the gap between knowledge bases and natural language by directly converting a group of knowledge base triples into human-readable sentences. However, most of the existing models suffer from the off-topic problem, namely, the models are prone to generate some unrelated clauses that are somehow involved with certain input terms regardless of the given input data. This problem seriously degrades the quality of the generation results. In this paper, we propose a novel dynamic topic tracker for solving this problem. Different from existing models, our proposed model learns a global hidden representation for topics and recognizes the corresponding topic during each generation step. The recognized topic is used as additional information to guide the generation process and thus alleviates the off-topic problem. The experimental results show that our proposed model can enhance the performance of sentence generation and the off-topic problem is significantly mitigated.

pdf
Unsupervised KB-to-Text Generation with Auxiliary Triple Extraction using Dual Learning
Zihao Fu | Bei Shi | Lidong Bing | Wai Lam
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

KB-to-text task aims at generating texts based on the given KB triples. Traditional methods usually map KB triples to sentences via a supervised seq-to-seq model. However, existing annotated datasets are very limited and human labeling is very expensive. In this paper, we propose a method which trains the generation model in a completely unsupervised way with unaligned raw text data and KB triples. Our method exploits a novel dual training framework which leverages the inverse relationship between the KB-to-text generation task and an auxiliary triple extraction task. In our architecture, we reconstruct KB triples or texts via a closed-loop framework via linking a generator and an extractor. Therefore the loss function that accounts for the reconstruction error of KB triples and texts can be used to train the generator and extractor. To resolve the cold start problem in training, we propose a method using a pseudo data generator which generates pseudo texts and KB triples for learning an initial model. To resolve the multiple-triple problem, we design an allocated reinforcement learning component to optimize the reconstruction loss. The experimental results demonstrate that our model can outperform other unsupervised generation methods and close to the bound of supervised methods.

2019

pdf
Fact Discovery from Knowledge Base via Facet Decomposition
Zihao Fu | Yankai Lin | Zhiyuan Liu | Wai Lam
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

During the past few decades, knowledge bases (KBs) have experienced rapid growth. Nevertheless, most KBs still suffer from serious incompletion. Researchers proposed many tasks such as knowledge base completion and relation prediction to help build the representation of KBs. However, there are some issues unsettled towards enriching the KBs. Knowledge base completion and relation prediction assume that we know two elements of the fact triples and we are going to predict the missing one. This assumption is too restricted in practice and prevents it from discovering new facts directly. To address this issue, we propose a new task, namely, fact discovery from knowledge base. This task only requires that we know the head entity and the goal is to discover facts associated with the head entity. To tackle this new problem, we propose a novel framework that decomposes the discovery problem into several facet discovery components. We also propose a novel auto-encoder based facet component to estimate some facets of the fact. Besides, we propose a feedback learning component to share the information between each facet. We evaluate our framework using a benchmark dataset and the experimental results show that our framework achieves promising results. We also conduct an extensive analysis of our framework in discovering different kinds of facts. The source code of this paper can be obtained from https://github.com/thunlp/FFD.

2018

pdf
Learning Domain-Sensitive and Sentiment-Aware Word Embeddings
Bei Shi | Zihao Fu | Lidong Bing | Wai Lam
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Word embeddings have been widely used in sentiment classification because of their efficacy for semantic representations of words. Given reviews from different domains, some existing methods for word embeddings exploit sentiment information, but they cannot produce domain-sensitive embeddings. On the other hand, some other existing methods can generate domain-sensitive word embeddings, but they cannot distinguish words with similar contexts but opposite sentiment polarity. We propose a new method for learning domain-sensitive and sentiment-aware embeddings that simultaneously capture the information of sentiment semantics and domain sensitivity of individual words. Our method can automatically determine and produce domain-common embeddings and domain-specific embeddings. The differentiation of domain-common and domain-specific words enables the advantage of data augmentation of common semantics from multiple domains and capture the varied semantics of specific words from different domains at the same time. Experimental results show that our model provides an effective way to learn domain-sensitive and sentiment-aware word embeddings which benefit sentiment classification at both sentence level and lexicon term level.