Zhuohao Chen


2022

pdf
Leveraging Task Transferability to Meta-learning for Clinical Section Classification with Limited Data
Zhuohao Chen | Jangwon Kim | Ram Bhakta | Mustafa Sir
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Identifying sections is one of the critical components of understanding medical information from unstructured clinical notes and developing assistive technologies for clinical note-writing tasks. Most state-of-the-art text classification systems require thousands of in-domain text data to achieve high performance. However, collecting in-domain and recent clinical note data with section labels is challenging given the high level of privacy and sensitivity. The present paper proposes an algorithmic way to improve the task transferability of meta-learning-based text classification in order to address the issue of low-resource target data. Specifically, we explore how to make the best use of the source dataset and propose a unique task transferability measure named Normalized Negative Conditional Entropy (NNCE). Leveraging the NNCE, we develop strategies for selecting clinical categories and sections from source task data to boost cross-domain meta-learning accuracy. Experimental results show that our task selection strategies improve section classification accuracy significantly compared to meta-learning algorithms.

2020

pdf
Towards end-2-end learning for predicting behavior codes from spoken utterances in psychotherapy conversations
Karan Singla | Zhuohao Chen | David Atkins | Shrikanth Narayanan
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Spoken language understanding tasks usually rely on pipelines involving complex processing blocks such as voice activity detection, speaker diarization and Automatic speech recognition (ASR). We propose a novel framework for predicting utterance level labels directly from speech features, thus removing the dependency on first generating transcripts, and transcription free behavioral coding. Our classifier uses a pretrained Speech-2-Vector encoder as bottleneck to generate word-level representations from speech features. This pretrained encoder learns to encode speech features for a word using an objective similar to Word2Vec. Our proposed approach just uses speech features and word segmentation information for predicting spoken utterance-level target labels. We show that our model achieves competitive results to other state-of-the-art approaches which use transcribed text for the task of predicting psychotherapy-relevant behavior codes.