Zhiming Mao


2021

pdf
Neural News Recommendation with Collaborative News Encoding and Structural User Encoding
Zhiming Mao | Xingshan Zeng | Kam-Fai Wong
Findings of the Association for Computational Linguistics: EMNLP 2021

Automatic news recommendation has gained much attention from the academic community and industry. Recent studies reveal that the key to this task lies within the effective representation learning of both news and users. Existing works typically encode news title and content separately while neglecting their semantic interaction, which is inadequate for news text comprehension. Besides, previous models encode user browsing history without leveraging the structural correlation of user browsed news to reflect user interests explicitly. In this work, we propose a news recommendation framework consisting of collaborative news encoding (CNE) and structural user encoding (SUE) to enhance news and user representation learning. CNE equipped with bidirectional LSTMs encodes news title and content collaboratively with cross-selection and cross-attention modules to learn semantic-interactive news representations. SUE utilizes graph convolutional networks to extract cluster-structural features of user history, followed by intra-cluster and inter-cluster attention modules to learn hierarchical user interest representations. Experiment results on the MIND dataset validate the effectiveness of our model to improve the performance of news recommendation.

2020

pdf
Dynamic Online Conversation Recommendation
Xingshan Zeng | Jing Li | Lu Wang | Zhiming Mao | Kam-Fai Wong
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Trending topics in social media content evolve over time, and it is therefore crucial to understand social media users and their interpersonal communications in a dynamic manner. Here we study dynamic online conversation recommendation, to help users engage in conversations that satisfy their evolving interests. While most prior work assumes static user interests, our model is able to capture the temporal aspects of user interests, and further handle future conversations that are unseen during training time. Concretely, we propose a neural architecture to exploit changes of user interactions and interests over time, to predict which discussions they are likely to enter. We conduct experiments on large-scale collections of Reddit conversations, and results on three subreddits show that our model significantly outperforms state-of-the-art models that make a static assumption of user interests. We further evaluate on handling “cold start”, and observe consistently better performance by our model when considering various degrees of sparsity of user’s chatting history and conversation contexts. Lastly, analyses on our model outputs indicate user interest change, explaining the advantage and efficacy of our approach.