Yijiang Liu


2020

pdf
End to End Chinese Lexical Fusion Recognition with Sememe Knowledge
Yijiang Liu | Meishan Zhang | Donghong Ji
Proceedings of the 28th International Conference on Computational Linguistics

In this paper, we present Chinese lexical fusion recognition, a new task which could be regarded as one kind of coreference recognition. First, we introduce the task in detail, showing the relationship with coreference recognition and differences from the existing tasks. Second, we propose an end-to-end model for the task, handling mentions as well as coreference relationship jointly. The model exploits the state-of-the-art contextualized BERT representations as an encoder, and is further enhanced with the sememe knowledge from HowNet by graph attention networks. We manually annotate a benchmark dataset for the task and then conduct experiments on it. Results demonstrate that our final model is effective and competitive for the task. Detailed analysis is offered for comprehensively understanding the new task and our proposed model.

pdf
HiTrans: A Transformer-Based Context- and Speaker-Sensitive Model for Emotion Detection in Conversations
Jingye Li | Donghong Ji | Fei Li | Meishan Zhang | Yijiang Liu
Proceedings of the 28th International Conference on Computational Linguistics

Emotion detection in conversations (EDC) is to detect the emotion for each utterance in conversations that have multiple speakers. Different from the traditional non-conversational emotion detection, the model for EDC should be context-sensitive (e.g., understanding the whole conversation rather than one utterance) and speaker-sensitive (e.g., understanding which utterance belongs to which speaker). In this paper, we propose a transformer-based context- and speaker-sensitive model for EDC, namely HiTrans, which consists of two hierarchical transformers. We utilize BERT as the low-level transformer to generate local utterance representations, and feed them into another high-level transformer so that utterance representations could be sensitive to the global context of the conversation. Moreover, we exploit an auxiliary task to make our model speaker-sensitive, called pairwise utterance speaker verification (PUSV), which aims to classify whether two utterances belong to the same speaker. We evaluate our model on three benchmark datasets, namely EmoryNLP, MELD and IEMOCAP. Results show that our model outperforms previous state-of-the-art models.