Yi Huang


2022

pdf
Advancing Semi-Supervised Task Oriented Dialog Systems by JSA Learning of Discrete Latent Variable Models
Yucheng Cai | Hong Liu | Zhijian Ou | Yi Huang | Junlan Feng
Proceedings of the 23rd Annual Meeting of the Special Interest Group on Discourse and Dialogue

Developing semi-supervised task-oriented dialog (TOD) systems by leveraging unlabeled dialog data has attracted increasing interests. For semi-supervised learning of latent state TOD models, variational learning is often used, but suffers from the annoying high-variance of the gradients propagated through discrete latent variables and the drawback of indirectly optimizing the target log-likelihood. Recently, an alternative algorithm, called joint stochastic approximation (JSA), has emerged for learning discrete latent variable models with impressive performances. In this paper, we propose to apply JSA to semi-supervised learning of the latent state TOD models, which is referred to as JSA-TOD. To our knowledge, JSA-TOD represents the first work in developing JSA based semi-supervised learning of discrete latent variable conditional models for such long sequential generation problems like in TOD systems. Extensive experiments show that JSA-TOD significantly outperforms its variational learning counterpart. Remarkably, semi-supervised JSA-TOD using 20% labels performs close to the full-supervised baseline on MultiWOZ2.1.

pdf
Generalized Intent Discovery: Learning from Open World Dialogue System
Yutao Mou | Keqing He | Yanan Wu | Pei Wang | Jingang Wang | Wei Wu | Yi Huang | Junlan Feng | Weiran Xu
Proceedings of the 29th International Conference on Computational Linguistics

Traditional intent classification models are based on a pre-defined intent set and only recognize limited in-domain (IND) intent classes. But users may input out-of-domain (OOD) queries in a practical dialogue system. Such OOD queries can provide directions for future improvement. In this paper, we define a new task, Generalized Intent Discovery (GID), which aims to extend an IND intent classifier to an open-world intent set including IND and OOD intents. We hope to simultaneously classify a set of labeled IND intent classes while discovering and recognizing new unlabeled OOD types incrementally. We construct three public datasets for different application scenarios and propose two kinds of frameworks, pipeline-based and end-to-end for future work. Further, we conduct exhaustive experiments and qualitative analysis to comprehend key challenges and provide new guidance for future GID research.

pdf
PSSAT: A Perturbed Semantic Structure Awareness Transferring Method for Perturbation-Robust Slot Filling
Guanting Dong | Daichi Guo | Liwen Wang | Xuefeng Li | Zechen Wang | Chen Zeng | Keqing He | Jinzheng Zhao | Hao Lei | Xinyue Cui | Yi Huang | Junlan Feng | Weiran Xu
Proceedings of the 29th International Conference on Computational Linguistics

Most existing slot filling models tend to memorize inherent patterns of entities and corresponding contexts from training data. However, these models can lead to system failure or undesirable outputs when being exposed to spoken language perturbation or variation in practice. We propose a perturbed semantic structure awareness transferring method for training perturbation-robust slot filling models. Specifically, we introduce two MLM-based training strategies to respectively learn contextual semantic structure and word distribution from unsupervised language perturbation corpus. Then, we transfer semantic knowledge learned from upstream training procedure into the original samples and filter generated data by consistency processing. These procedures aims to enhance the robustness of slot filling models. Experimental results show that our method consistently outperforms the previous basic methods and gains strong generalization while preventing the model from memorizing inherent patterns of entities and contexts.

2021

pdf
Counterfactual Matters: Intrinsic Probing For Dialogue State Tracking
Yi Huang | Junlan Feng | Xiaoting Wu | Xiaoyu Du
The First Workshop on Evaluations and Assessments of Neural Conversation Systems

A Dialogue State Tracker (DST) is a core component of modular task-oriented dialogue systems. Tremendous research progress has been made in past ten years to improve performance of DSTs especially on benchmark datasets. However, their generalization to novel and realistic scenarios beyond the held-out conversations is limited. In this paper, we design experimental studies to answer: 1) How does the distribution of dialogue data affect the performance of DSTs? 2) What are effective ways to probe counterfactual matter for DSTs? Our findings are: the performance variance of generative DSTs is not only due to the model structure itself, but can be attributed to the distribution of cross-domain values. Evaluating iconic generative DST models on MultiWOZ dataset with counterfactuals results in a significant performance drop of up to 34.64% (from 50.91% to 16.27%) in absolute joint goal accuracy. It is believed that our experimental results can guide the future work to better understand the intrinsic core of DST and rethink the suitable way for specific tasks given the application property.

pdf
Balancing Methods for Multi-label Text Classification with Long-Tailed Class Distribution
Yi Huang | Buse Giledereli | Abdullatif Köksal | Arzucan Özgür | Elif Ozkirimli
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Multi-label text classification is a challenging task because it requires capturing label dependencies. It becomes even more challenging when class distribution is long-tailed. Resampling and re-weighting are common approaches used for addressing the class imbalance problem, however, they are not effective when there is label dependency besides class imbalance because they result in oversampling of common labels. Here, we introduce the application of balancing loss functions for multi-label text classification. We perform experiments on a general domain dataset with 90 labels (Reuters-21578) and a domain-specific dataset from PubMed with 18211 labels. We find that a distribution-balanced loss function, which inherently addresses both the class imbalance and label linkage problems, outperforms commonly used loss functions. Distribution balancing methods have been successfully used in the image recognition field. Here, we show their effectiveness in natural language processing. Source code is available at https://github.com/blessu/BalancedLossNLP.

2020

pdf
Meta-Reinforced Multi-Domain State Generator for Dialogue Systems
Yi Huang | Junlan Feng | Min Hu | Xiaoting Wu | Xiaoyu Du | Shuo Ma
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

A Dialogue State Tracker (DST) is a core component of a modular task-oriented dialogue system. Tremendous progress has been made in recent years. However, the major challenges remain. The state-of-the-art accuracy for DST is below 50% for a multi-domain dialogue task. A learnable DST for any new domain requires a large amount of labeled in-domain data and training from scratch. In this paper, we propose a Meta-Reinforced Multi-Domain State Generator (MERET). Our first contribution is to improve the DST accuracy. We enhance a neural model based DST generator with a reward manager, which is built on policy gradient reinforcement learning (RL) to fine-tune the generator. With this change, we are able to improve the joint accuracy of DST from 48.79% to 50.91% on the MultiWOZ corpus. Second, we explore to train a DST meta-learning model with a few domains as source domains and a new domain as target domain. We apply the model-agnostic meta-learning algorithm (MAML) to DST and the obtained meta-learning model is used for new domain adaptation. Our experimental results show this solution is able to outperform the traditional training approach with extremely less training data in target domain.

pdf
Towards Low-Resource Semi-Supervised Dialogue Generation with Meta-Learning
Yi Huang | Junlan Feng | Shuo Ma | Xiaoyu Du | Xiaoting Wu
Findings of the Association for Computational Linguistics: EMNLP 2020

In this paper, we propose a meta-learning based semi-supervised explicit dialogue state tracker (SEDST) for neural dialogue generation, denoted as MEDST. Our main motivation is to further bridge the chasm between the need for high accuracy dialogue state tracker and the common reality that only scarce annotated data is available for most real-life dialogue tasks. Specifically, MEDST has two core steps: meta-training with adequate unlabelled data in an automatic way and meta-testing with a few annotated data by supervised learning. In particular, we enhance SEDST via entropy regularization, and investigate semi-supervised learning frameworks based on model-agnostic meta-learning (MAML) that are able to reduce the amount of required intermediate state labelling. We find that by leveraging un-annotated data in meta-way instead, the amount of dialogue state annotations can be reduced below 10% while maintaining equivalent system performance. Experimental results show MEDST outperforms SEDST substantially by 18.7% joint goal accuracy and 14.3% entity match rate on the KVRET corpus with 2% labelled data in semi-supervision.