Xu Zhang


2022

pdf
FGraDA: A Dataset and Benchmark for Fine-Grained Domain Adaptation in Machine Translation
Wenhao Zhu | Shujian Huang | Tong Pu | Pingxuan Huang | Xu Zhang | Jian Yu | Wei Chen | Yanfeng Wang | Jiajun Chen
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Previous research for adapting a general neural machine translation (NMT) model into a specific domain usually neglects the diversity in translation within the same domain, which is a core problem for domain adaptation in real-world scenarios. One representative of such challenging scenarios is to deploy a translation system for a conference with a specific topic, e.g., global warming or coronavirus, where there are usually extremely less resources due to the limited schedule. To motivate wider investigation in such a scenario, we present a real-world fine-grained domain adaptation task in machine translation (FGraDA). The FGraDA dataset consists of Chinese-English translation task for four sub-domains of information technology: autonomous vehicles, AI education, real-time networks, and smart phone. Each sub-domain is equipped with a development set and test set for evaluation purposes. To be closer to reality, FGraDA does not employ any in-domain bilingual training data but provides bilingual dictionaries and wiki knowledge base, which can be easier obtained within a short time. We benchmark the fine-grained domain adaptation task and present in-depth analyses showing that there are still challenging problems to further improve the performance with heterogeneous resources.

pdf
Complicate Then Simplify: A Novel Way to Explore Pre-trained Models for Text Classification
Xu Zhang | Zejie Liu | Yanzheng Xiang | Deyu Zhou
Proceedings of the 29th International Conference on Computational Linguistics

With the development of pre-trained models (PTMs), the performance of text classification has been continuously improved by directly employing the features generated by PTMs. However such way might not fully explore the knowledge in PTMs as it is constrained by the difficulty of the task. Compared to difficult task, the learning algorithms tend to saturate early on the simple task. Moreover, the native sentence representations derived from BERT are prone to be collapsed and directly employing such representation for text classification might fail to fully capture discriminative features. In order to address these issues, in this paper we propose a novel framework for text classification which implements a two-stage training strategy. In the pre-training stage, auxiliary labels are introduced to increase the task difficulties and to fully exploit the knowledge in the pre-trained model. In the fine-tuning stage, the textual representation learned in the pre-training stage is employed and the classifier is fine-tuned to obtain better classification performance. Experiments were conducted on six text classification corpora and the results showed that the proposed framework outperformed several state-of-the-art baselines.

2020

pdf
Intra-Correlation Encoding for Chinese Sentence Intention Matching
Xu Zhang | Yifeng Li | Wenpeng Lu | Ping Jian | Guoqiang Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Sentence intention matching is vital for natural language understanding. Especially for Chinese sentence intention matching task, due to the ambiguity of Chinese words, semantic missing or semantic confusion are more likely to occur in the encoding process. Although the existing methods have enriched text representation through pre-trained word embedding to solve this problem, due to the particularity of Chinese text, different granularities of pre-trained word embedding will affect the semantic description of a piece of text. In this paper, we propose an effective approach that combines character-granularity and word-granularity features to perform sentence intention matching, and we utilize soft alignment attention to enhance the local information of sentences on the corresponding levels. The proposed method can capture sentence feature information from multiple perspectives and correlation information between different levels of sentences. By evaluating on BQ and LCQMC datasets, our model has achieved remarkable results, and demonstrates better or comparable performance with BERT-based models.