Wenxuan Wang


2022

pdf
Understanding and Improving Sequence-to-Sequence Pretraining for Neural Machine Translation
Wenxuan Wang | Wenxiang Jiao | Yongchang Hao | Xing Wang | Shuming Shi | Zhaopeng Tu | Michael Lyu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we present a substantial step in better understanding the SOTA sequence-to-sequence (Seq2Seq) pretraining for neural machine translation (NMT). We focus on studying the impact of the jointly pretrained decoder, which is the main difference between Seq2Seq pretraining and previous encoder-based pretraining approaches for NMT. By carefully designing experiments on three language pairs, we find that Seq2Seq pretraining is a double-edged sword: On one hand, it helps NMT models to produce more diverse translations and reduce adequacy-related translation errors. On the other hand, the discrepancies between Seq2Seq pretraining and NMT finetuning limit the translation quality (i.e., domain discrepancy) and induce the over-estimation issue (i.e., objective discrepancy). Based on these observations, we further propose simple and effective strategies, named in-domain pretraining and input adaptation to remedy the domain and objective discrepancies, respectively. Experimental results on several language pairs show that our approach can consistently improve both translation performance and model robustness upon Seq2Seq pretraining.

2020

pdf
Rethinking the Value of Transformer Components
Wenxuan Wang | Zhaopeng Tu
Proceedings of the 28th International Conference on Computational Linguistics

Transformer becomes the state-of-the-art translation model, while it is not well studied how each intermediate component contributes to the model performance, which poses significant challenges for designing optimal architectures. In this work, we bridge this gap by evaluating the impact of individual component (sub-layer) in trained Transformer models from different perspectives. Experimental results across language pairs, training strategies, and model capacities show that certain components are consistently more important than the others. We also report a number of interesting findings that might help humans better analyze, understand and improve Transformer models. Based on these observations, we further propose a new training strategy that can improves translation performance by distinguishing the unimportant components in training.