Shuo Huang


2021

pdf
Few-Shot Semantic Parsing for New Predicates
Zhuang Li | Lizhen Qu | Shuo Huang | Gholamreza Haffari
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

In this work, we investigate the problems of semantic parsing in a few-shot learning setting. In this setting, we are provided with k utterance-logical form pairs per new predicate. The state-of-the-art neural semantic parsers achieve less than 25% accuracy on benchmark datasets when k = 1. To tackle this problem, we proposed to i) apply a designated meta-learning method to train the model; ii) regularize attention scores with alignment statistics; iii) apply a smoothing technique in pretraining. As a result, our method consistently outperforms all the baselines in both one and two-shot settings.

pdf
On Robustness of Neural Semantic Parsers
Shuo Huang | Zhuang Li | Lizhen Qu | Lei Pan
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Semantic parsing maps natural language (NL) utterances into logical forms (LFs), which underpins many advanced NLP problems. Semantic parsers gain performance boosts with deep neural networks, but inherit vulnerabilities against adversarial examples. In this paper, we provide the first empirical study on the robustness of semantic parsers in the presence of adversarial attacks. Formally, adversaries of semantic parsing are considered to be the perturbed utterance-LF pairs, whose utterances have exactly the same meanings as the original ones. A scalable methodology is proposed to construct robustness test sets based on existing benchmark corpora. Our results answered five research questions in measuring the sate-of-the-art parsers’ performance on robustness test sets, and evaluating the effect of data augmentation.