Rui Wang


2022

pdf
The AISP-SJTU Simultaneous Translation System for IWSLT 2022
Qinpei Zhu | Renshou Wu | Guangfeng Liu | Xinyu Zhu | Xingyu Chen | Yang Zhou | Qingliang Miao | Rui Wang | Kai Yu
Proceedings of the 19th International Conference on Spoken Language Translation (IWSLT 2022)

This paper describes AISP-SJTU’s submissions for the IWSLT 2022 Simultaneous Translation task. We participate in the text-to-text and speech-to-text simultaneous translation from English to Mandarin Chinese. The training of the CAAT is improved by training across multiple values of right context window size, which achieves good online performance without setting a prior right context window size for training. For speech-to-text task, the best model we submitted achieves 25.87, 26.21, 26.45 BLEU in low, medium and high regimes on tst-COMMON, corresponding to 27.94, 28.31, 28.43 BLEU in text-to-text task.

pdf
Few-Shot Class-Incremental Learning for Named Entity Recognition
Rui Wang | Tong Yu | Handong Zhao | Sungchul Kim | Subrata Mitra | Ruiyi Zhang | Ricardo Henao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Previous work of class-incremental learning for Named Entity Recognition (NER) relies on the assumption that there exists abundance of labeled data for the training of new classes. In this work, we study a more challenging but practical problem, i.e., few-shot class-incremental learning for NER, where an NER model is trained with only few labeled samples of the new classes, without forgetting knowledge of the old ones. To alleviate the problem of catastrophic forgetting in few-shot class-incremental learning, we reconstruct synthetic training data of the old classes using the trained NER model, augmenting the training of new classes. We further develop a framework that distills from the existing model with both synthetic data, and real data from the current training set. Experimental results show that our approach achieves significant improvements over existing baselines.

pdf
WikiDiverse: A Multimodal Entity Linking Dataset with Diversified Contextual Topics and Entity Types
Xuwu Wang | Junfeng Tian | Min Gui | Zhixu Li | Rui Wang | Ming Yan | Lihan Chen | Yanghua Xiao
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multimodal Entity Linking (MEL) which aims at linking mentions with multimodal contexts to the referent entities from a knowledge base (e.g., Wikipedia), is an essential task for many multimodal applications. Although much attention has been paid to MEL, the shortcomings of existing MEL datasets including limited contextual topics and entity types, simplified mention ambiguity, and restricted availability, have caused great obstacles to the research and application of MEL. In this paper, we present WikiDiverse, a high-quality human-annotated MEL dataset with diversified contextual topics and entity types from Wikinews, which uses Wikipedia as the corresponding knowledge base. A well-tailored annotation procedure is adopted to ensure the quality of the dataset. Based on WikiDiverse, a sequence of well-designed MEL models with intra-modality and inter-modality attentions are implemented, which utilize the visual information of images more adequately than existing MEL models do. Extensive experimental analyses are conducted to investigate the contributions of different modalities in terms of MEL, facilitating the future research on this task.

pdf
SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing
Junyi Ao | Rui Wang | Long Zhou | Chengyi Wang | Shuo Ren | Yu Wu | Shujie Liu | Tom Ko | Qing Li | Yu Zhang | Zhihua Wei | Yao Qian | Jinyu Li | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.

pdf
Bridging the Data Gap between Training and Inference for Unsupervised Neural Machine Translation
Zhiwei He | Xing Wang | Rui Wang | Shuming Shi | Zhaopeng Tu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Back-translation is a critical component of Unsupervised Neural Machine Translation (UNMT), which generates pseudo parallel data from target monolingual data. A UNMT model is trained on the pseudo parallel data with \bf translated source, and translates \bf natural source sentences in inference. The source discrepancy between training and inference hinders the translation performance of UNMT models. By carefully designing experiments, we identify two representative characteristics of the data gap in source: (1) style gap (i.e., translated vs. natural text style) that leads to poor generalization capability; (2) content gap that induces the model to produce hallucination content biased towards the target language. To narrow the data gap, we propose an online self-training approach, which simultaneously uses the pseudo parallel data {natural source, translated target} to mimic the inference scenario. Experimental results on several widely-used language pairs show that our approach outperforms two strong baselines (XLM and MASS) by remedying the style and content gaps.

pdf
Synchronous Refinement for Neural Machine Translation
Kehai Chen | Masao Utiyama | Eiichiro Sumita | Rui Wang | Min Zhang
Findings of the Association for Computational Linguistics: ACL 2022

Machine translation typically adopts an encoder-to-decoder framework, in which the decoder generates the target sentence word-by-word in an auto-regressive manner. However, the auto-regressive decoder faces a deep-rooted one-pass issue whereby each generated word is considered as one element of the final output regardless of whether it is correct or not. These generated wrong words further constitute the target historical context to affect the generation of subsequent target words. This paper proposes a novel synchronous refinement method to revise potential errors in the generated words by considering part of the target future context. Particularly, the proposed approach allows the auto-regressive decoder to refine the previously generated target words and generate the next target word synchronously. The experimental results on three widely-used machine translation tasks demonstrated the effectiveness of the proposed approach.

pdf
A Study of Syntactic Multi-Modality in Non-Autoregressive Machine Translation
Kexun Zhang | Rui Wang | Xu Tan | Junliang Guo | Yi Ren | Tao Qin | Tie-Yan Liu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

It is difficult for non-autoregressive translation (NAT) models to capture the multi-modal distribution of target translations due to their conditional independence assumption, which is known as the “multi-modality problem”, including the lexical multi-modality and the syntactic multi-modality. While the first one has been well studied, the syntactic multi-modality brings severe challenges to the standard cross entropy (XE) loss in NAT and is understudied. In this paper, we conduct a systematic study on the syntactic multi-modality problem. Specifically, we decompose it into short- and long-range syntactic multi-modalities and evaluate several recent NAT algorithms with advanced loss functions on both carefully designed synthesized datasets and real datasets. We find that the Connectionist Temporal Classification (CTC) loss and the Order-Agnostic Cross Entropy (OAXE) loss can better handle short- and long-range syntactic multi-modalities respectively. Furthermore, we take the best of both and design a new loss function to better handle the complicated syntactic multi-modality in real-world datasets. To facilitate practical usage, we provide a guide to using different loss functions for different kinds of syntactic multi-modality.

2021

pdf
MusicBERT: Symbolic Music Understanding with Large-Scale Pre-Training
Mingliang Zeng | Xu Tan | Rui Wang | Zeqian Ju | Tao Qin | Tie-Yan Liu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
FastCorrect 2: Fast Error Correction on Multiple Candidates for Automatic Speech Recognition
Yichong Leng | Xu Tan | Rui Wang | Linchen Zhu | Jin Xu | Wenjie Liu | Linquan Liu | Xiang-Yang Li | Tao Qin | Edward Lin | Tie-Yan Liu
Findings of the Association for Computational Linguistics: EMNLP 2021

Error correction is widely used in automatic speech recognition (ASR) to post-process the generated sentence, and can further reduce the word error rate (WER). Although multiple candidates are generated by an ASR system through beam search, current error correction approaches can only correct one sentence at a time, failing to leverage the voting effect from multiple candidates to better detect and correct error tokens. In this work, we propose FastCorrect 2, an error correction model that takes multiple ASR candidates as input for better correction accuracy. FastCorrect 2 adopts non-autoregressive generation for fast inference, which consists of an encoder that processes multiple source sentences and a decoder that generates the target sentence in parallel from the adjusted source sentence, where the adjustment is based on the predicted duration of each source token. However, there are some issues when handling multiple source sentences. First, it is non-trivial to leverage the voting effect from multiple source sentences since they usually vary in length. Thus, we propose a novel alignment algorithm to maximize the degree of token alignment among multiple sentences in terms of token and pronunciation similarity. Second, the decoder can only take one adjusted source sentence as input, while there are multiple source sentences. Thus, we develop a candidate predictor to detect the most suitable candidate for the decoder. Experiments on our inhouse dataset and AISHELL-1 show that FastCorrect 2 can further reduce the WER over the previous correction model with single candidate by 3.2% and 2.6%, demonstrating the effectiveness of leveraging multiple candidates in ASR error correction. FastCorrect 2 achieves better performance than the cascaded re-scoring and correction pipeline and can serve as a unified post-processing module for ASR.

pdf
Stacked AMR Parsing with Silver Data
Qingrong Xia | Zhenghua Li | Rui Wang | Min Zhang
Findings of the Association for Computational Linguistics: EMNLP 2021

Lacking sufficient human-annotated data is one main challenge for abstract meaning representation (AMR) parsing. To alleviate this problem, previous works usually make use of silver data or pre-trained language models. In particular, one recent seq-to-seq work directly fine-tunes AMR graph sequences on the encoder-decoder pre-trained language model and achieves new state-of-the-art results, outperforming previous works by a large margin. However, it makes the decoding relatively slower. In this work, we investigate alternative approaches to achieve competitive performance at faster speeds. We propose a simplified AMR parser and a pre-training technique for the effective usage of silver data. We conduct extensive experiments on the widely used AMR2.0 dataset and the results demonstrate that our Transformer-based AMR parser achieves the best performance among the seq2graph-based models. Furthermore, with silver data, our model achieves competitive results with the SOTA model, and the speed is an order of magnitude faster. Detailed analyses are conducted to gain more insights into our proposed model and the effectiveness of the pre-training technique.

pdf
Advances and Challenges in Unsupervised Neural Machine Translation
Rui Wang | Hai Zhao
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts

Unsupervised cross-lingual language representation initialization methods, together with mechanisms such as denoising and back-translation, have advanced unsupervised neural machine translation (UNMT), which has achieved impressive results. Meanwhile, there are still several challenges for UNMT. This tutorial first introduces the background and the latest progress of UNMT. We then examine a number of challenges to UNMT and give empirical results on how well the technology currently holds up.

pdf
A Unified Span-Based Approach for Opinion Mining with Syntactic Constituents
Qingrong Xia | Bo Zhang | Rui Wang | Zhenghua Li | Yue Zhang | Fei Huang | Luo Si | Min Zhang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Fine-grained opinion mining (OM) has achieved increasing attraction in the natural language processing (NLP) community, which aims to find the opinion structures of “Who expressed what opinions towards what” in one sentence. In this work, motivated by its span-based representations of opinion expressions and roles, we propose a unified span-based approach for the end-to-end OM setting. Furthermore, inspired by the unified span-based formalism of OM and constituent parsing, we explore two different methods (multi-task learning and graph convolutional neural network) to integrate syntactic constituents into the proposed model to help OM. We conduct experiments on the commonly used MPQA 2.0 dataset. The experimental results show that our proposed unified span-based approach achieves significant improvements over previous works in the exact F1 score and reduces the number of wrongly-predicted opinion expressions and roles, showing the effectiveness of our method. In addition, incorporating the syntactic constituents achieves promising improvements over the strong baseline enhanced by contextualized word representations.

pdf
Self-Training for Unsupervised Neural Machine Translation in Unbalanced Training Data Scenarios
Haipeng Sun | Rui Wang | Kehai Chen | Masao Utiyama | Eiichiro Sumita | Tiejun Zhao
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Unsupervised neural machine translation (UNMT) that relies solely on massive monolingual corpora has achieved remarkable results in several translation tasks. However, in real-world scenarios, massive monolingual corpora do not exist for some extremely low-resource languages such as Estonian, and UNMT systems usually perform poorly when there is not adequate training corpus for one language. In this paper, we first define and analyze the unbalanced training data scenario for UNMT. Based on this scenario, we propose UNMT self-training mechanisms to train a robust UNMT system and improve its performance in this case. Experimental results on several language pairs show that the proposed methods substantially outperform conventional UNMT systems.

pdf
DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings
Che Liu | Rui Wang | Jinghua Liu | Jian Sun | Fei Huang | Luo Si
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Learning sentence embeddings from dialogues has drawn increasing attention due to its low annotation cost and high domain adaptability. Conventional approaches employ the siamese-network for this task, which obtains the sentence embeddings through modeling the context-response semantic relevance by applying a feed-forward network on top of the sentence encoders. However, as the semantic textual similarity is commonly measured through the element-wise distance metrics (e.g. cosine and L2 distance), such architecture yields a large gap between training and evaluating. In this paper, we propose DialogueCSE, a dialogue-based contrastive learning approach to tackle this issue. DialogueCSE first introduces a novel matching-guided embedding (MGE) mechanism, which generates a context-aware embedding for each candidate response embedding (i.e. the context-free embedding) according to the guidance of the multi-turn context-response matching matrices. Then it pairs each context-aware embedding with its corresponding context-free embedding and finally minimizes the contrastive loss across all pairs. We evaluate our model on three multi-turn dialogue datasets: the Microsoft Dialogue Corpus, the Jing Dong Dialogue Corpus, and the E-commerce Dialogue Corpus. Evaluation results show that our approach significantly outperforms the baselines across all three datasets in terms of MAP and Spearman’s correlation measures, demonstrating its effectiveness. Further quantitative experiments show that our approach achieves better performance when leveraging more dialogue context and remains robust when less training data is provided.

pdf
Entity Relation Extraction as Dependency Parsing in Visually Rich Documents
Yue Zhang | Zhang Bo | Rui Wang | Junjie Cao | Chen Li | Zuyi Bao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Previous works on key information extraction from visually rich documents (VRDs) mainly focus on labeling the text within each bounding box (i.e.,semantic entity), while the relations in-between are largely unexplored. In this paper, we adapt the popular dependency parsing model, the biaffine parser, to this entity relation extraction task. Being different from the original dependency parsing model which recognizes dependency relations between words, we identify relations between groups of words with layout information instead. We have compared different representations of the semantic entity, different VRD encoders, and different relation decoders. For the model training, we explore multi-task learning to combine entity labeling and relation extraction tasks; and for the evaluation, we conduct experiments on different datasets with filtering and augmentation. The results demonstrate that our proposed model achieves 65.96% F1 score on the FUNSD dataset. As for the real-world application, our model has been applied to the in-house customs data, achieving reliable performance in the production setting.

pdf
Unsupervised Paraphrasing Consistency Training for Low Resource Named Entity Recognition
Rui Wang | Ricardo Henao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Unsupervised consistency training is a way of semi-supervised learning that encourages consistency in model predictions between the original and augmented data. For Named Entity Recognition (NER), existing approaches augment the input sequence with token replacement, assuming annotations on the replaced positions unchanged. In this paper, we explore the use of paraphrasing as a more principled data augmentation scheme for NER unsupervised consistency training. Specifically, we convert Conditional Random Field (CRF) into a multi-label classification module and encourage consistency on the entity appearance between the original and paraphrased sequences. Experiments show that our method is especially effective when annotations are limited.

pdf
Chinese Opinion Role Labeling with Corpus Translation: A Pivot Study
Ranran Zhen | Rui Wang | Guohong Fu | Chengguo Lv | Meishan Zhang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Opinion Role Labeling (ORL), aiming to identify the key roles of opinion, has received increasing interest. Unlike most of the previous works focusing on the English language, in this paper, we present the first work of Chinese ORL. We construct a Chinese dataset by manually translating and projecting annotations from a standard English MPQA dataset. Then, we investigate the effectiveness of cross-lingual transfer methods, including model transfer and corpus translation. We exploit multilingual BERT with Contextual Parameter Generator and Adapter methods to examine the potentials of unsupervised cross-lingual learning and our experiments and analyses for both bilingual and multilingual transfers establish a foundation for the future research of this task.

pdf
Syntax in End-to-End Natural Language Processing
Hai Zhao | Rui Wang | Kehai Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: Tutorial Abstracts

This tutorial surveys the latest technical progress of syntactic parsing and the role of syntax in end-to-end natural language processing (NLP) tasks, in which semantic role labeling (SRL) and machine translation (MT) are the representative NLP tasks that have always been beneficial from informative syntactic clues since a long time ago, though the advance from end-to-end deep learning models shows new results. In this tutorial, we will first introduce the background and the latest progress of syntactic parsing and SRL/NMT. Then, we will summarize the key evidence about the syntactic impacts over these two concerning tasks, and explore the behind reasons from both computational and linguistic backgrounds.

2020

pdf
SJTU-NICT’s Supervised and Unsupervised Neural Machine Translation Systems for the WMT20 News Translation Task
Zuchao Li | Hai Zhao | Rui Wang | Kehai Chen | Masao Utiyama | Eiichiro Sumita
Proceedings of the Fifth Conference on Machine Translation

In this paper, we introduced our joint team SJTU-NICT ‘s participation in the WMT 2020 machine translation shared task. In this shared task, we participated in four translation directions of three language pairs: English-Chinese, English-Polish on supervised machine translation track, German-Upper Sorbian on low-resource and unsupervised machine translation tracks. Based on different conditions of language pairs, we have experimented with diverse neural machine translation (NMT) techniques: document-enhanced NMT, XLM pre-trained language model enhanced NMT, bidirectional translation as a pre-training, reference language based UNMT, data-dependent gaussian prior objective, and BT-BLEU collaborative filtering self-training. We also used the TF-IDF algorithm to filter the training set to obtain a domain more similar set with the test set for finetuning. In our submissions, the primary systems won the first place on English to Chinese, Polish to English, and German to Upper Sorbian translation directions.

pdf
Neural Topic Modeling with Bidirectional Adversarial Training
Rui Wang | Xuemeng Hu | Deyu Zhou | Yulan He | Yuxuan Xiong | Chenchen Ye | Haiyang Xu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Recent years have witnessed a surge of interests of using neural topic models for automatic topic extraction from text, since they avoid the complicated mathematical derivations for model inference as in traditional topic models such as Latent Dirichlet Allocation (LDA). However, these models either typically assume improper prior (e.g. Gaussian or Logistic Normal) over latent topic space or could not infer topic distribution for a given document. To address these limitations, we propose a neural topic modeling approach, called Bidirectional Adversarial Topic (BAT) model, which represents the first attempt of applying bidirectional adversarial training for neural topic modeling. The proposed BAT builds a two-way projection between the document-topic distribution and the document-word distribution. It uses a generator to capture the semantic patterns from texts and an encoder for topic inference. Furthermore, to incorporate word relatedness information, the Bidirectional Adversarial Topic model with Gaussian (Gaussian-BAT) is extended from BAT. To verify the effectiveness of BAT and Gaussian-BAT, three benchmark corpora are used in our experiments. The experimental results show that BAT and Gaussian-BAT obtain more coherent topics, outperforming several competitive baselines. Moreover, when performing text clustering based on the extracted topics, our models outperform all the baselines, with more significant improvements achieved by Gaussian-BAT where an increase of near 6% is observed in accuracy.

pdf
Content Word Aware Neural Machine Translation
Kehai Chen | Rui Wang | Masao Utiyama | Eiichiro Sumita
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural machine translation (NMT) encodes the source sentence in a universal way to generate the target sentence word-by-word. However, NMT does not consider the importance of word in the sentence meaning, for example, some words (i.e., content words) express more important meaning than others (i.e., function words). To address this limitation, we first utilize word frequency information to distinguish between content and function words in a sentence, and then design a content word-aware NMT to improve translation performance. Empirical results on the WMT14 English-to-German, WMT14 English-to-French, and WMT17 Chinese-to-English translation tasks show that the proposed methods can significantly improve the performance of Transformer-based NMT.

pdf
Relational Graph Attention Network for Aspect-based Sentiment Analysis
Kai Wang | Weizhou Shen | Yunyi Yang | Xiaojun Quan | Rui Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Aspect-based sentiment analysis aims to determine the sentiment polarity towards a specific aspect in online reviews. Most recent efforts adopt attention-based neural network models to implicitly connect aspects with opinion words. However, due to the complexity of language and the existence of multiple aspects in a single sentence, these models often confuse the connections. In this paper, we address this problem by means of effective encoding of syntax information. Firstly, we define a unified aspect-oriented dependency tree structure rooted at a target aspect by reshaping and pruning an ordinary dependency parse tree. Then, we propose a relational graph attention network (R-GAT) to encode the new tree structure for sentiment prediction. Extensive experiments are conducted on the SemEval 2014 and Twitter datasets, and the experimental results confirm that the connections between aspects and opinion words can be better established with our approach, and the performance of the graph attention network (GAT) is significantly improved as a consequence.

pdf
Syntax-Aware Opinion Role Labeling with Dependency Graph Convolutional Networks
Bo Zhang | Yue Zhang | Rui Wang | Zhenghua Li | Min Zhang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Opinion role labeling (ORL) is a fine-grained opinion analysis task and aims to answer “who expressed what kind of sentiment towards what?”. Due to the scarcity of labeled data, ORL remains challenging for data-driven methods. In this work, we try to enhance neural ORL models with syntactic knowledge by comparing and integrating different representations. We also propose dependency graph convolutional networks (DEPGCN) to encode parser information at different processing levels. In order to compensate for parser inaccuracy and reduce error propagation, we introduce multi-task learning (MTL) to train the parser and the ORL model simultaneously. We verify our methods on the benchmark MPQA corpus. The experimental results show that syntactic information is highly valuable for ORL, and our final MTL model effectively boosts the F1 score by 9.29 over the syntax-agnostic baseline. In addition, we find that the contributions from syntactic knowledge do not fully overlap with contextualized word representations (BERT). Our best model achieves 4.34 higher F1 score than the current state-ofthe-art.

pdf
Knowledge Distillation for Multilingual Unsupervised Neural Machine Translation
Haipeng Sun | Rui Wang | Kehai Chen | Masao Utiyama | Eiichiro Sumita | Tiejun Zhao
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs. However, it can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time. That is, research on multilingual UNMT has been limited. In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder, making use of multilingual data to improve UNMT for all language pairs. On the basis of the empirical findings, we propose two knowledge distillation methods to further enhance multilingual UNMT performance. Our experiments on a dataset with English translated to and from twelve other languages (including three language families and six language branches) show remarkable results, surpassing strong unsupervised individual baselines while achieving promising performance between non-English language pairs in zero-shot translation scenarios and alleviating poor performance in low-resource language pairs.

pdf
Multi-Domain Dialogue Acts and Response Co-Generation
Kai Wang | Junfeng Tian | Rui Wang | Xiaojun Quan | Jianxing Yu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Generating fluent and informative responses is of critical importance for task-oriented dialogue systems. Existing pipeline approaches generally predict multiple dialogue acts first and use them to assist response generation. There are at least two shortcomings with such approaches. First, the inherent structures of multi-domain dialogue acts are neglected. Second, the semantic associations between acts and responses are not taken into account for response generation. To address these issues, we propose a neural co-generation model that generates dialogue acts and responses concurrently. Unlike those pipeline approaches, our act generation module preserves the semantic structures of multi-domain dialogue acts and our response generation module dynamically attends to different acts as needed. We train the two modules jointly using an uncertainty loss to adjust their task weights adaptively. Extensive experiments are conducted on the large-scale MultiWOZ dataset and the results show that our model achieves very favorable improvement over several state-of-the-art models in both automatic and human evaluations.

pdf
Regularized Context Gates on Transformer for Machine Translation
Xintong Li | Lemao Liu | Rui Wang | Guoping Huang | Max Meng
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Context gates are effective to control the contributions from the source and target contexts in the recurrent neural network (RNN) based neural machine translation (NMT). However, it is challenging to extend them into the advanced Transformer architecture, which is more complicated than RNN. This paper first provides a method to identify source and target contexts and then introduce a gate mechanism to control the source and target contributions in Transformer. In addition, to further reduce the bias problem in the gate mechanism, this paper proposes a regularization method to guide the learning of the gates with supervision automatically generated using pointwise mutual information. Extensive experiments on 4 translation datasets demonstrate that the proposed model obtains an averaged gain of 1.0 BLEU score over a strong Transformer baseline.

pdf
Chinese Grammatical Error Diagnosis with Graph Convolution Network and Multi-task Learning
Yikang Luo | Zuyi Bao | Chen Li | Rui Wang
Proceedings of the 6th Workshop on Natural Language Processing Techniques for Educational Applications

This paper describes our participating system on the Chinese Grammatical Error Diagnosis (CGED) 2020 shared task. For the detection subtask, we propose two BERT-based approaches 1) with syntactic dependency trees enhancing the model performance and 2) under the multi-task learning framework to combine the sequence labeling and the sequence-to-sequence (seq2seq) models. For the correction subtask, we utilize the masked language model, the seq2seq model and the spelling check model to generate corrections based on the detection results. Finally, our system achieves the highest recall rate on the top-3 correction and the second best F1 score on identification level and position level.

pdf
Neural Topic Modeling by Incorporating Document Relationship Graph
Deyu Zhou | Xuemeng Hu | Rui Wang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Graph Neural Networks (GNNs) that capture the relationships between graph nodes via message passing have been a hot research direction in the natural language processing community. In this paper, we propose Graph Topic Model (GTM), a GNN based neural topic model that represents a corpus as a document relationship graph. Documents and words in the corpus become nodes in the graph and are connected based on document-word co-occurrences. By introducing the graph structure, the relationships between documents are established through their shared words and thus the topical representation of a document is enriched by aggregating information from its neighboring nodes using graph convolution. Extensive experiments on three datasets were conducted and the results demonstrate the effectiveness of the proposed approach.

pdf
Neural Topic Modeling with Cycle-Consistent Adversarial Training
Xuemeng Hu | Rui Wang | Deyu Zhou | Yuxuan Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Advances on deep generative models have attracted significant research interest in neural topic modeling. The recently proposed Adversarial-neural Topic Model models topics with an adversarially trained generator network and employs Dirichlet prior to capture the semantic patterns in latent topics. It is effective in discovering coherent topics but unable to infer topic distributions for given documents or utilize available document labels. To overcome such limitations, we propose Topic Modeling with Cycle-consistent Adversarial Training (ToMCAT) and its supervised version sToMCAT. ToMCAT employs a generator network to interpret topics and an encoder network to infer document topics. Adversarial training and cycle-consistent constraints are used to encourage the generator and the encoder to produce realistic samples that coordinate with each other. sToMCAT extends ToMCAT by incorporating document labels into the topic modeling process to help discover more coherent topics. The effectiveness of the proposed models is evaluated on unsupervised/supervised topic modeling and text classification. The experimental results show that our models can produce both coherent and informative topics, outperforming a number of competitive baselines.

pdf
SentiX: A Sentiment-Aware Pre-Trained Model for Cross-Domain Sentiment Analysis
Jie Zhou | Junfeng Tian | Rui Wang | Yuanbin Wu | Wenming Xiao | Liang He
Proceedings of the 28th International Conference on Computational Linguistics

Pre-trained language models have been widely applied to cross-domain NLP tasks like sentiment analysis, achieving state-of-the-art performance. However, due to the variety of users’ emotional expressions across domains, fine-tuning the pre-trained models on the source domain tends to overfit, leading to inferior results on the target domain. In this paper, we pre-train a sentiment-aware language model (SentiX) via domain-invariant sentiment knowledge from large-scale review datasets, and utilize it for cross-domain sentiment analysis task without fine-tuning. We propose several pre-training tasks based on existing lexicons and annotations at both token and sentence levels, such as emoticons, sentiment words, and ratings, without human interference. A series of experiments are conducted and the results indicate the great advantages of our model. We obtain new state-of-the-art results in all the cross-domain sentiment analysis tasks, and our proposed SentiX can be trained with only 1% samples (18 samples) and it achieves better performance than BERT with 90% samples.

pdf
Semantic Role Labeling with Heterogeneous Syntactic Knowledge
Qingrong Xia | Rui Wang | Zhenghua Li | Yue Zhang | Min Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Recently, due to the interplay between syntax and semantics, incorporating syntactic knowledge into neural semantic role labeling (SRL) has achieved much attention. Most of the previous syntax-aware SRL works focus on explicitly modeling homogeneous syntactic knowledge over tree outputs. In this work, we propose to encode heterogeneous syntactic knowledge for SRL from both explicit and implicit representations. First, we introduce graph convolutional networks to explicitly encode multiple heterogeneous dependency parse trees. Second, we extract the implicit syntactic representations from syntactic parser trained with heterogeneous treebanks. Finally, we inject the two types of heterogeneous syntax-aware representations into the base SRL model as extra inputs. We conduct experiments on two widely-used benchmark datasets, i.e., Chinese Proposition Bank 1.0 and English CoNLL-2005 dataset. Experimental results show that incorporating heterogeneous syntactic knowledge brings significant improvements over strong baselines. We further conduct detailed analysis to gain insights on the usefulness of heterogeneous (vs. homogeneous) syntactic knowledge and the effectiveness of our proposed approaches for modeling such knowledge.

pdf
Robust Unsupervised Neural Machine Translation with Adversarial Denoising Training
Haipeng Sun | Rui Wang | Kehai Chen | Xugang Lu | Masao Utiyama | Eiichiro Sumita | Tiejun Zhao
Proceedings of the 28th International Conference on Computational Linguistics

Unsupervised neural machine translation (UNMT) has recently attracted great interest in the machine translation community. The main advantage of the UNMT lies in its easy collection of required large training text sentences while with only a slightly worse performance than supervised neural machine translation which requires expensive annotated translation pairs on some translation tasks. In most studies, the UMNT is trained with clean data without considering its robustness to the noisy data. However, in real-world scenarios, there usually exists noise in the collected input sentences which degrades the performance of the translation system since the UNMT is sensitive to the small perturbations of the input sentences. In this paper, we first time explicitly take the noisy data into consideration to improve the robustness of the UNMT based systems. First of all, we clearly defined two types of noises in training sentences, i.e., word noise and word order noise, and empirically investigate its effect in the UNMT, then we propose adversarial training methods with denoising process in the UNMT. Experimental results on several language pairs show that our proposed methods substantially improved the robustness of the conventional UNMT systems in noisy scenarios.

pdf
High-order Semantic Role Labeling
Zuchao Li | Hai Zhao | Rui Wang | Kevin Parnow
Findings of the Association for Computational Linguistics: EMNLP 2020

Semantic role labeling is primarily used to identify predicates, arguments, and their semantic relationships. Due to the limitations of modeling methods and the conditions of pre-identified predicates, previous work has focused on the relationships between predicates and arguments and the correlations between arguments at most, while the correlations between predicates have been neglected for a long time. High-order features and structure learning were very common in modeling such correlations before the neural network era. In this paper, we introduce a high-order graph structure for the neural semantic role labeling model, which enables the model to explicitly consider not only the isolated predicate-argument pairs but also the interaction between the predicate-argument pairs. Experimental results on 7 languages of the CoNLL-2009 benchmark show that the high-order structural learning techniques are beneficial to the strong performing SRL models and further boost our baseline to achieve new state-of-the-art results.

pdf
Chunk-based Chinese Spelling Check with Global Optimization
Zuyi Bao | Chen Li | Rui Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Chinese spelling check is a challenging task due to the characteristics of the Chinese language, such as the large character set, no word boundary, and short word length. On the one hand, most of the previous works only consider corrections with similar character pronunciation or shape, failing to correct visually and phonologically irrelevant typos. On the other hand, pipeline-style architectures are widely adopted to deal with different types of spelling errors in individual modules, which is difficult to optimize. In order to handle these issues, in this work, 1) we extend the traditional confusion sets with semantical candidates to cover different types of errors; 2) we propose a chunk-based framework to correct single-character and multi-character word errors uniformly; and 3) we adopt a global optimization strategy to enable a sentence-level correction selection. The experimental results show that the proposed approach achieves a new state-of-the-art performance on three benchmark datasets, as well as an optical character recognition dataset.

pdf
Integrating Task Specific Information into Pretrained Language Models for Low Resource Fine Tuning
Rui Wang | Shijing Si | Guoyin Wang | Lei Zhang | Lawrence Carin | Ricardo Henao
Findings of the Association for Computational Linguistics: EMNLP 2020

Pretrained Language Models (PLMs) have improved the performance of natural language understanding in recent years. Such models are pretrained on large corpora, which encode the general prior knowledge of natural languages but are agnostic to information characteristic of downstream tasks. This often results in overfitting when fine-tuned with low resource datasets where task-specific information is limited. In this paper, we integrate label information as a task-specific prior into the self-attention component of pretrained BERT models. Experiments on several benchmarks and real-word datasets suggest that the proposed approach can largely improve the performance of pretrained models when fine-tuning with small datasets.

pdf
Reference Language based Unsupervised Neural Machine Translation
Zuchao Li | Hai Zhao | Rui Wang | Masao Utiyama | Eiichiro Sumita
Findings of the Association for Computational Linguistics: EMNLP 2020

Exploiting a common language as an auxiliary for better translation has a long tradition in machine translation and lets supervised learning-based machine translation enjoy the enhancement delivered by the well-used pivot language in the absence of a source language to target language parallel corpus. The rise of unsupervised neural machine translation (UNMT) almost completely relieves the parallel corpus curse, though UNMT is still subject to unsatisfactory performance due to the vagueness of the clues available for its core back-translation training. Further enriching the idea of pivot translation by extending the use of parallel corpora beyond the source-target paradigm, we propose a new reference language-based framework for UNMT, RUNMT, in which the reference language only shares a parallel corpus with the source, but this corpus still indicates a signal clear enough to help the reconstruction training of UNMT through a proposed reference agreement mechanism. Experimental results show that our methods improve the quality of UNMT over that of a strong baseline that uses only one auxiliary language, demonstrating the usefulness of the proposed reference language-based UNMT and establishing a good start for the community.

2019

pdf
Open Event Extraction from Online Text using a Generative Adversarial Network
Rui Wang | Deyu Zhou | Yulan He
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

To extract the structured representations of open-domain events, Bayesian graphical models have made some progress. However, these approaches typically assume that all words in a document are generated from a single event. While this may be true for short text such as tweets, such an assumption does not generally hold for long text such as news articles. Moreover, Bayesian graphical models often rely on Gibbs sampling for parameter inference which may take long time to converge. To address these limitations, we propose an event extraction model based on Generative Adversarial Nets, called Adversarial-neural Event Model (AEM). AEM models an event with a Dirichlet prior and uses a generator network to capture the patterns underlying latent events. A discriminator is used to distinguish documents reconstructed from the latent events and the original documents. A byproduct of the discriminator is that the features generated by the learned discriminator network allow the visualization of the extracted events. Our model has been evaluated on two Twitter datasets and a news article dataset. Experimental results show that our model outperforms the baseline approaches on all the datasets, with more significant improvements observed on the news article dataset where an increase of 15% is observed in F-measure.

pdf
Syntax-Enhanced Self-Attention-Based Semantic Role Labeling
Yue Zhang | Rui Wang | Luo Si
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

As a fundamental NLP task, semantic role labeling (SRL) aims to discover the semantic roles for each predicate within one sentence. This paper investigates how to incorporate syntactic knowledge into the SRL task effectively. We present different approaches of en- coding the syntactic information derived from dependency trees of different quality and representations; we propose a syntax-enhanced self-attention model and compare it with other two strong baseline methods; and we con- duct experiments with newly published deep contextualized word representations as well. The experiment results demonstrate that with proper incorporation of the high quality syntactic information, our model achieves a new state-of-the-art performance for the Chinese SRL task on the CoNLL-2009 dataset.

pdf
Attention Optimization for Abstractive Document Summarization
Min Gui | Junfeng Tian | Rui Wang | Zhenglu Yang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Attention plays a key role in the improvement of sequence-to-sequence-based document summarization models. To obtain a powerful attention helping with reproducing the most salient information and avoiding repetitions, we augment the vanilla attention model from both local and global aspects. We propose attention refinement unit paired with local variance loss to impose supervision on the attention model at each decoding step, and we also propose a global variance loss to optimize the attention distributions of all decoding steps from the global perspective. The performances on CNN/Daily Mail dataset verify the effectiveness of our methods.

pdf
Recurrent Positional Embedding for Neural Machine Translation
Kehai Chen | Rui Wang | Masao Utiyama | Eiichiro Sumita
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

In the Transformer network architecture, positional embeddings are used to encode order dependencies into the input representation. However, this input representation only involves static order dependencies based on discrete numerical information, that is, are independent of word content. To address this issue, this work proposes a recurrent positional embedding approach based on word vector. In this approach, these recurrent positional embeddings are learned by a recurrent neural network, encoding word content-based order dependencies into the input representation. They are then integrated into the existing multi-head self-attention model as independent heads or part of each head. The experimental results revealed that the proposed approach improved translation performance over that of the state-of-the-art Transformer baseline in WMT’14 English-to-German and NIST Chinese-to-English translation tasks.

pdf
English-Myanmar Supervised and Unsupervised NMT: NICT’s Machine Translation Systems at WAT-2019
Rui Wang | Haipeng Sun | Kehai Chen | Chenchen Ding | Masao Utiyama | Eiichiro Sumita
Proceedings of the 6th Workshop on Asian Translation

This paper presents the NICT’s participation (team ID: NICT) in the 6th Workshop on Asian Translation (WAT-2019) shared translation task, specifically Myanmar (Burmese) - English task in both translation directions. We built neural machine translation (NMT) systems for these tasks. Our NMT systems were trained with language model pretraining. Back-translation technology is adopted to NMT. Our NMT systems rank the third in English-to-Myanmar and the second in Myanmar-to-English according to BLEU score.

pdf
Unsupervised Bilingual Word Embedding Agreement for Unsupervised Neural Machine Translation
Haipeng Sun | Rui Wang | Kehai Chen | Masao Utiyama | Eiichiro Sumita | Tiejun Zhao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Unsupervised bilingual word embedding (UBWE), together with other technologies such as back-translation and denoising, has helped unsupervised neural machine translation (UNMT) achieve remarkable results in several language pairs. In previous methods, UBWE is first trained using non-parallel monolingual corpora and then this pre-trained UBWE is used to initialize the word embedding in the encoder and decoder of UNMT. That is, the training of UBWE and UNMT are separate. In this paper, we first empirically investigate the relationship between UBWE and UNMT. The empirical findings show that the performance of UNMT is significantly affected by the performance of UBWE. Thus, we propose two methods that train UNMT with UBWE agreement. Empirical results on several language pairs show that the proposed methods significantly outperform conventional UNMT.

pdf
Neural Machine Translation with Reordering Embeddings
Kehai Chen | Rui Wang | Masao Utiyama | Eiichiro Sumita
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The reordering model plays an important role in phrase-based statistical machine translation. However, there are few works that exploit the reordering information in neural machine translation. In this paper, we propose a reordering mechanism to learn the reordering embedding of a word based on its contextual information. These learned reordering embeddings are stacked together with self-attention networks to learn sentence representation for machine translation. The reordering mechanism can be easily integrated into both the encoder and the decoder in the Transformer translation system. Experimental results on WMT’14 English-to-German, NIST Chinese-to-English, and WAT Japanese-to-English translation tasks demonstrate that the proposed methods can significantly improve the performance of the Transformer.

pdf
BiSET: Bi-directional Selective Encoding with Template for Abstractive Summarization
Kai Wang | Xiaojun Quan | Rui Wang
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The success of neural summarization models stems from the meticulous encodings of source articles. To overcome the impediments of limited and sometimes noisy training data, one promising direction is to make better use of the available training data by applying filters during summarization. In this paper, we propose a novel Bi-directional Selective Encoding with Template (BiSET) model, which leverages template discovered from training data to softly select key information from each source article to guide its summarization process. Extensive experiments on a standard summarization dataset are conducted and the results show that the template-equipped BiSET model manages to improve the summarization performance significantly with a new state of the art.

pdf
Semi-supervised Domain Adaptation for Dependency Parsing
Zhenghua Li | Xue Peng | Min Zhang | Rui Wang | Luo Si
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

During the past decades, due to the lack of sufficient labeled data, most studies on cross-domain parsing focus on unsupervised domain adaptation, assuming there is no target-domain training data. However, unsupervised approaches make limited progress so far due to the intrinsic difficulty of both domain adaptation and parsing. This paper tackles the semi-supervised domain adaptation problem for Chinese dependency parsing, based on two newly-annotated large-scale domain-aware datasets. We propose a simple domain embedding approach to merge the source- and target-domain training data, which is shown to be more effective than both direct corpus concatenation and multi-task learning. In order to utilize unlabeled target-domain data, we employ the recent contextualized word representations and show that a simple fine-tuning procedure can further boost cross-domain parsing accuracy by large margin.

pdf
Sentence-Level Agreement for Neural Machine Translation
Mingming Yang | Rui Wang | Kehai Chen | Masao Utiyama | Eiichiro Sumita | Min Zhang | Tiejun Zhao
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

The training objective of neural machine translation (NMT) is to minimize the loss between the words in the translated sentences and those in the references. In NMT, there is a natural correspondence between the source sentence and the target sentence. However, this relationship has only been represented using the entire neural network and the training objective is computed in word-level. In this paper, we propose a sentence-level agreement module to directly minimize the difference between the representation of source and target sentence. The proposed agreement module can be integrated into NMT as an additional training objective function and can also be used to enhance the representation of the source sentences. Empirical results on the NIST Chinese-to-English and WMT English-to-German tasks show the proposed agreement module can significantly improve the NMT performance.

pdf
Lattice-Based Transformer Encoder for Neural Machine Translation
Fengshun Xiao | Jiangtong Li | Hai Zhao | Rui Wang | Kehai Chen
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Neural machine translation (NMT) takes deterministic sequences for source representations. However, either word-level or subword-level segmentations have multiple choices to split a source sequence with different word segmentors or different subword vocabulary sizes. We hypothesize that the diversity in segmentations may affect the NMT performance. To integrate different segmentations with the state-of-the-art NMT model, Transformer, we propose lattice-based encoders to explore effective word or subword representation in an automatic way during training. We propose two methods: 1) lattice positional encoding and 2) lattice-aware self-attention. These two methods can be used together and show complementary to each other to further improve translation performance. Experiment results show superiorities of lattice-based encoders in word-level and subword-level representations over conventional Transformer encoder.

pdf
NICT’s Supervised Neural Machine Translation Systems for the WMT19 News Translation Task
Raj Dabre | Kehai Chen | Benjamin Marie | Rui Wang | Atsushi Fujita | Masao Utiyama | Eiichiro Sumita
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

In this paper, we describe our supervised neural machine translation (NMT) systems that we developed for the news translation task for Kazakh↔English, Gujarati↔English, Chinese↔English, and English→Finnish translation directions. We focused on leveraging multilingual transfer learning and back-translation for the extremely low-resource language pairs: Kazakh↔English and Gujarati↔English translation. For the Chinese↔English translation, we used the provided parallel data augmented with a large quantity of back-translated monolingual data to train state-of-the-art NMT systems. We then employed techniques that have been proven to be most effective, such as back-translation, fine-tuning, and model ensembling, to generate the primary submissions of Chinese↔English. For English→Finnish, our submission from WMT18 remains a strong baseline despite the increase in parallel corpora for this year’s task.

pdf
NICT’s Unsupervised Neural and Statistical Machine Translation Systems for the WMT19 News Translation Task
Benjamin Marie | Haipeng Sun | Rui Wang | Kehai Chen | Atsushi Fujita | Masao Utiyama | Eiichiro Sumita
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper presents the NICT’s participation in the WMT19 unsupervised news translation task. We participated in the unsupervised translation direction: German-Czech. Our primary submission to the task is the result of a simple combination of our unsupervised neural and statistical machine translation systems. Our system is ranked first for the German-to-Czech translation task, using only the data provided by the organizers (“constraint’”), according to both BLEU-cased and human evaluation. We also performed contrastive experiments with other language pairs, namely, English-Gujarati and English-Kazakh, to better assess the effectiveness of unsupervised machine translation in for distant language pairs and in truly low-resource conditions.

pdf
SJTU-NICT at MRP 2019: Multi-Task Learning for End-to-End Uniform Semantic Graph Parsing
Zuchao Li | Hai Zhao | Zhuosheng Zhang | Rui Wang | Masao Utiyama | Eiichiro Sumita
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning

This paper describes our SJTU-NICT’s system for participating in the shared task on Cross-Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). Our system uses a graph-based approach to model a variety of semantic graph parsing tasks. Our main contributions in the submitted system are summarized as follows: 1. Our model is fully end-to-end and is capable of being trained only on the given training set which does not rely on any other extra training source including the companion data provided by the organizer; 2. We extend our graph pruning algorithm to a variety of semantic graphs, solving the problem of excessive semantic graph search space; 3. We introduce multi-task learning for multiple objectives within the same framework. The evaluation results show that our system achieved second place in the overall F1 score and achieved the best F1 score on the DM framework.

pdf
SUDA-Alibaba at MRP 2019: Graph-Based Models with BERT
Yue Zhang | Wei Jiang | Qingrong Xia | Junjie Cao | Rui Wang | Zhenghua Li | Min Zhang
Proceedings of the Shared Task on Cross-Framework Meaning Representation Parsing at the 2019 Conference on Natural Language Learning

In this paper, we describe our participating systems in the shared task on Cross- Framework Meaning Representation Parsing (MRP) at the 2019 Conference for Computational Language Learning (CoNLL). The task includes five frameworks for graph-based meaning representations, i.e., DM, PSD, EDS, UCCA, and AMR. One common characteristic of our systems is that we employ graph-based methods instead of transition-based methods when predicting edges between nodes. For SDP, we jointly perform edge prediction, frame tagging, and POS tagging via multi-task learning (MTL). For UCCA, we also jointly model a constituent tree parsing and a remote edge recovery task. For both EDS and AMR, we produce nodes first and edges second in a pipeline fashion. External resources like BERT are found helpful for all frameworks except AMR. Our final submission ranks the third on the overall MRP evaluation metric, the first on EDS and the second on UCCA.

2018

pdf
Exploring Recombination for Efficient Decoding of Neural Machine Translation
Zhisong Zhang | Rui Wang | Masao Utiyama | Eiichiro Sumita | Hai Zhao
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

In Neural Machine Translation (NMT), the decoder can capture the features of the entire prediction history with neural connections and representations. This means that partial hypotheses with different prefixes will be regarded differently no matter how similar they are. However, this might be inefficient since some partial hypotheses can contain only local differences that will not influence future predictions. In this work, we introduce recombination in NMT decoding based on the concept of the “equivalence” of partial hypotheses. Heuristically, we use a simple n-gram suffix based equivalence function and adapt it into beam search decoding. Through experiments on large-scale Chinese-to-English and English-to-Germen translation tasks, we show that the proposed method can obtain similar translation quality with a smaller beam size, making NMT decoding more efficient.

pdf
A Survey of Domain Adaptation for Neural Machine Translation
Chenhui Chu | Rui Wang
Proceedings of the 27th International Conference on Computational Linguistics

Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.

pdf
NICT’s Neural and Statistical Machine Translation Systems for the WMT18 News Translation Task
Benjamin Marie | Rui Wang | Atsushi Fujita | Masao Utiyama | Eiichiro Sumita
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper presents the NICT’s participation to the WMT18 shared news translation task. We participated in the eight translation directions of four language pairs: Estonian-English, Finnish-English, Turkish-English and Chinese-English. For each translation direction, we prepared state-of-the-art statistical (SMT) and neural (NMT) machine translation systems. Our NMT systems were trained with the transformer architecture using the provided parallel data enlarged with a large quantity of back-translated monolingual data that we generated with a new incremental training framework. Our primary submissions to the task are the result of a simple combination of our SMT and NMT systems. Our systems are ranked first for the Estonian-English and Finnish-English language pairs (constraint) according to BLEU-cased.

pdf
NICT’s Corpus Filtering Systems for the WMT18 Parallel Corpus Filtering Task
Rui Wang | Benjamin Marie | Masao Utiyama | Eiichiro Sumita
Proceedings of the Third Conference on Machine Translation: Shared Task Papers

This paper presents the NICT’s participation in the WMT18 shared parallel corpus filtering task. The organizers provided 1 billion words German-English corpus crawled from the web as part of the Paracrawl project. This corpus is too noisy to build an acceptable neural machine translation (NMT) system. Using the clean data of the WMT18 shared news translation task, we designed several features and trained a classifier to score each sentence pairs in the noisy data. Finally, we sampled 100 million and 10 million words and built corresponding NMT systems. Empirical results show that our NMT systems trained on sampled data achieve promising performance.

pdf
Dynamic Sentence Sampling for Efficient Training of Neural Machine Translation
Rui Wang | Masao Utiyama | Eiichiro Sumita
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Traditional Neural machine translation (NMT) involves a fixed training procedure where each sentence is sampled once during each epoch. In reality, some sentences are well-learned during the initial few epochs; however, using this approach, the well-learned sentences would continue to be trained along with those sentences that were not well learned for 10-30 epochs, which results in a wastage of time. Here, we propose an efficient method to dynamically sample the sentences in order to accelerate the NMT training. In this approach, a weight is assigned to each sentence based on the measured difference between the training costs of two iterations. Further, in each epoch, a certain percentage of sentences are dynamically sampled according to their weights. Empirical results based on the NIST Chinese-to-English and the WMT English-to-German tasks show that the proposed method can significantly accelerate the NMT training and improve the NMT performance.

pdf
English-Myanmar NMT and SMT with Pre-ordering: NICT’s Machine Translation Systems at WAT-2018
Rui Wang | Chenchen Ding | Masao Utiyama | Eiichiro Sumita
Proceedings of the 32nd Pacific Asia Conference on Language, Information and Computation: 5th Workshop on Asian Translation: 5th Workshop on Asian Translation

2017

pdf
Sentence Embedding for Neural Machine Translation Domain Adaptation
Rui Wang | Andrew Finch | Masao Utiyama | Eiichiro Sumita
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Although new corpora are becoming increasingly available for machine translation, only those that belong to the same or similar domains are typically able to improve translation performance. Recently Neural Machine Translation (NMT) has become prominent in the field. However, most of the existing domain adaptation methods only focus on phrase-based machine translation. In this paper, we exploit the NMT’s internal embedding of the source sentence and use the sentence embedding similarity to select the sentences which are close to in-domain data. The empirical adaptation results on the IWSLT English-French and NIST Chinese-English tasks show that the proposed methods can substantially improve NMT performance by 2.4-9.0 BLEU points, outperforming the existing state-of-the-art baseline by 2.3-4.5 BLEU points.

pdf
Instance Weighting for Neural Machine Translation Domain Adaptation
Rui Wang | Masao Utiyama | Lemao Liu | Kehai Chen | Eiichiro Sumita
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Instance weighting has been widely applied to phrase-based machine translation domain adaptation. However, it is challenging to be applied to Neural Machine Translation (NMT) directly, because NMT is not a linear model. In this paper, two instance weighting technologies, i.e., sentence weighting and domain weighting with a dynamic weight learning strategy, are proposed for NMT domain adaptation. Empirical results on the IWSLT English-German/French tasks show that the proposed methods can substantially improve NMT performance by up to 2.7-6.7 BLEU points, outperforming the existing baselines by up to 1.6-3.6 BLEU points.

pdf
Neural Machine Translation with Source Dependency Representation
Kehai Chen | Rui Wang | Masao Utiyama | Lemao Liu | Akihiro Tamura | Eiichiro Sumita | Tiejun Zhao
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Source dependency information has been successfully introduced into statistical machine translation. However, there are only a few preliminary attempts for Neural Machine Translation (NMT), such as concatenating representations of source word and its dependency label together. In this paper, we propose a novel NMT with source dependency representation to improve translation performance of NMT, especially long sentences. Empirical results on NIST Chinese-to-English translation task show that our method achieves 1.6 BLEU improvements on average over a strong NMT system.

pdf
Context-Aware Smoothing for Neural Machine Translation
Kehai Chen | Rui Wang | Masao Utiyama | Eiichiro Sumita | Tiejun Zhao
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In Neural Machine Translation (NMT), each word is represented as a low-dimension, real-value vector for encoding its syntax and semantic information. This means that even if the word is in a different sentence context, it is represented as the fixed vector to learn source representation. Moreover, a large number of Out-Of-Vocabulary (OOV) words, which have different syntax and semantic information, are represented as the same vector representation of “unk”. To alleviate this problem, we propose a novel context-aware smoothing method to dynamically learn a sentence-specific vector for each word (including OOV words) depending on its local context words in a sentence. The learned context-aware representation is integrated into the NMT to improve the translation performance. Empirical results on NIST Chinese-to-English translation task show that the proposed approach achieves 1.78 BLEU improvements on average over a strong attentional NMT, and outperforms some existing systems.

2016

pdf
Featureless Domain-Specific Term Extraction with Minimal Labelled Data
Rui Wang | Wei Liu | Chris McDonald
Proceedings of the Australasian Language Technology Association Workshop 2016

pdf
Connecting Phrase based Statistical Machine Translation Adaptation
Rui Wang | Hai Zhao | Bao-Liang Lu | Masao Utiyama | Eiichiro Sumita
Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers

Although more additional corpora are now available for Statistical Machine Translation (SMT), only the ones which belong to the same or similar domains of the original corpus can indeed enhance SMT performance directly. A series of SMT adaptation methods have been proposed to select these similar-domain data, and most of them focus on sentence selection. In comparison, phrase is a smaller and more fine grained unit for data selection, therefore we propose a straightforward and efficient connecting phrase based adaptation method, which is applied to both bilingual phrase pair and monolingual n-gram adaptation. The proposed method is evaluated on IWSLT/NIST data sets, and the results show that phrase based SMT performances are significantly improved (up to +1.6 in comparison with phrase based SMT baseline system and +0.9 in comparison with existing methods).

2015

pdf
English to Chinese Translation: How Chinese Character Matters
Rui Wang | Hai Zhao | Bao-Liang Lu
Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation

pdf
Neural Network Language Model for Chinese Pinyin Input Method Engine
Shenyuan Chen | Hai Zhao | Rui Wang
Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation

pdf
A Machine Learning Method to Distinguish Machine Translation from Human Translation
Yitong Li | Rui Wang | Hai Zhao
Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation: Posters

2014

pdf
Senti-LSSVM: Sentiment-Oriented Multi-Relation Extraction with Latent Structural SVM
Lizhen Qu | Yi Zhang | Rui Wang | Lili Jiang | Rainer Gemulla | Gerhard Weikum
Transactions of the Association for Computational Linguistics, Volume 2

Extracting instances of sentiment-oriented relations from user-generated web documents is important for online marketing analysis. Unlike previous work, we formulate this extraction task as a structured prediction problem and design the corresponding inference as an integer linear program. Our latent structural SVM based model can learn from training corpora that do not contain explicit annotations of sentiment-bearing expressions, and it can simultaneously recognize instances of both binary (polarity) and ternary (comparative) relations with regard to entity mentions of interest. The empirical evaluation shows that our approach significantly outperforms state-of-the-art systems across domains (cameras and movies) and across genres (reviews and forum posts). The gold standard corpus that we built will also be a valuable resource for the community.

pdf
Neural Network Based Bilingual Language Model Growing for Statistical Machine Translation
Rui Wang | Hai Zhao | Bao-Liang Lu | Masao Utiyama | Eiichiro Sumita
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)

pdf
The SAS Statistical Machine Translation System for WAT 2014
Rui Wang | Xu Yang | Yan Gao
Proceedings of the 1st Workshop on Asian Translation (WAT2014)

pdf
Aligning Predicate-Argument Structures for Paraphrase Fragment Extraction
Michaela Regneri | Rui Wang | Manfred Pinkal
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

Paraphrases and paraphrasing algorithms have been found of great importance in various natural language processing tasks. While most paraphrase extraction approaches extract equivalent sentences, sentences are an inconvenient unit for further processing, because they are too specific, and often not exact paraphrases. Paraphrase fragment extraction is a technique that post-processes sentential paraphrases and prunes them to more convenient phrase-level units. We present a new approach that uses semantic roles to extract paraphrase fragments from sentence pairs that share semantic content to varying degrees, including full paraphrases. In contrast to previous systems, the use of semantic parses allows for extracting paraphrases with high wording variance and different syntactic categories. The approach is tested on four different input corpora and compared to two previous systems for extracting paraphrase fragments. Our system finds three times as many good paraphrase fragments per sentence pair as the baselines, and at the same time outputs 30% fewer unrelated fragment pairs.

2013

pdf
Converting Continuous-Space Language Models into N-Gram Language Models for Statistical Machine Translation
Rui Wang | Masao Utiyama | Isao Goto | Eiichro Sumita | Hai Zhao | Bao-Liang Lu
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing

2012

pdf
Joint Grammar and Treebank Development for Mandarin Chinese with HPSG
Yi Zhang | Rui Wang | Yu Chen
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

We present the ongoing development of MCG, a linguistically deep and precise grammar for Mandarin Chinese together with its accompanying treebank, both based on the linguistic framework of HPSG, and using MRS as the semantic representation. We highlight some key features of our grammar design, and review a number of challenging phenomena, with comparisons to alternative linguistic treatments and implementations. One of the distinguishing characteristics of our approach is the tight integration of grammar and treebank development. The two-step treebank annotation procedure benefits from the efficiency of the discriminant-based annotation approach, while giving the annotators full freedom of producing extra-grammatical structures. This not only allows the creation of a precise and full-coverage treebank with an imperfect grammar, but also provides prompt feedback for grammarians to identify the errors in the grammar design and implementation. Preliminary evaluation and error analysis shows that the grammar already covers most of the core phenomena for Mandarin Chinese, and the treebank annotation procedure reaches a stable speed of 35 sentences per hour with satisfying quality.

pdf
Constructing a Question Corpus for Textual Semantic Relations
Rui Wang | Shuguang Li
Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC'12)

Finding useful questions is a challenging task in Community Question Answering (CQA). There are two key issues need to be resolved: 1) what is a useful question to the given reference question; and furthermore 2) what kind of relations exist between a given pair of questions. In order to answer these two questions, in this paper, we propose a fine-grained inventory of textual semantic relations between questions and annotate a corpus constructed from the WikiAnswers website. We also extract large archives of question pairs with user-generated links and use them as labeled data for separating useful questions from neutral ones, achieving 72.2% of accuracy. We find such online CQA repositories valuable resources for related research.

pdf
Using Discourse Information for Paraphrase Extraction
Michaela Regneri | Rui Wang
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning

pdf
Linguistically-Augmented Bulgarian-to-English Statistical Machine Translation Model
Rui Wang | Petya Osenova | Kiril Simov
Proceedings of the Joint Workshop on Exploiting Synergies between Information Retrieval and Machine Translation (ESIRMT) and Hybrid Approaches to Machine Translation (HyTra)

pdf
Linguistically-Enriched Models for Bulgarian-to-English Machine Translation
Rui Wang | Petya Osenova | Kiril Simov
Proceedings of the Sixth Workshop on Syntax, Semantics and Structure in Statistical Translation

pdf
Sentence Realization with Unlexicalized Tree Linearization Grammars
Rui Wang | Yi Zhang
Proceedings of COLING 2012: Posters

2011

pdf
The ACL Anthology Searchbench
Ulrich Schäfer | Bernd Kiefer | Christian Spurk | Jörg Steffen | Rui Wang
Proceedings of the ACL-HLT 2011 System Demonstrations

pdf
Paraphrase Fragment Extraction from Monolingual Comparable Corpora
Rui Wang | Chris Callison-Burch
Proceedings of the 4th Workshop on Building and Using Comparable Corpora: Comparable Corpora and the Web

pdf
Statistical Machine Transliteration with Multi-to-Multi Joint Source Channel Model
Yu Chen | Rui Wang | Yi Zhang
Proceedings of the 3rd Named Entities Workshop (NEWS 2011)

pdf
Engineering a Deep HPSG for Mandarin Chinese
Yi Zhang | Rui Wang | Yu Chen
Proceedings of the 9th Workshop on Asian Language Resources

2010

pdf
Cheap Facts and Counter-Facts
Rui Wang | Chris Callison-Burch
Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mechanical Turk

pdf
Discriminative Parse Reranking for Chinese with Homogeneous and Heterogeneous Annotations
Weiwei Sun | Rui Wang | Yi Zhang
CIPS-SIGHAN Joint Conference on Chinese Language Processing

pdf
Constructing a Textual Semantic Relation Corpus Using a Discourse Treebank
Rui Wang | Caroline Sporleder
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

In this paper, we present our work on constructing a textual semantic relation corpus by making use of an existing treebank annotated with discourse relations. We extract adjacent text span pairs and group them into six categories according to the different discourse relations between them. After that, we present the details of our annotation scheme, which includes six textual semantic relations, 'backward entailment', 'forward entailment', 'equality', 'contradiction', 'overlapping', and 'independent'. We also discuss some ambiguous examples to show the difficulty of such annotation task, which cannot be easily done by an automatic mapping between discourse relations and semantic relations. We have two annotators and each of them performs the task twice. The basic statistics on the constructed corpus looks promising: we achieve 81.17% of agreement on the six semantic relation annotation with a .718 kappa score, and it increases to 91.21% if we collapse the last two labels with a .775 kappa score.

pdf
Hybrid Constituent and Dependency Parsing with Tsinghua Chinese Treebank
Rui Wang | Yi Zhang
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC'10)

In this paper, we describe our hybrid parsing model on the Mandarin Chinese processing. In particular, we work on the Tsinghua Chinese Treebank (TCT), whose annotation has both constitutes and the head information of each constitute. The model we design combines the mainstream constitute parsing and dependency parsing. We present in detail 1) how to (partially) encode the head information into the constitute parsing, 2) how to encode constitute information into the dependency parsing, and 3) how to restore the head information using the dependency structure. For each of them, we take different strategies to deal with different cases. In an open shared task evaluation, we achieve an f1-score of 85.23% for the constitute parsing, 82.35% with partial head information, and 74.27% with complete head information. The error analysis shows the challenge of restoring multiple-headed constitutes and also some potentials to use the dependency structure to guide the constitute parsing, which will be our future work to explore.

pdf
MARS: A Specialized RTE System for Parser Evaluation
Rui Wang | Yi Zhang
Proceedings of the 5th International Workshop on Semantic Evaluation

2009

pdf
Recognizing Textual Relatedness with Predicate-Argument Structures
Rui Wang | Yi Zhang
Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing

pdf
Hybrid Multilingual Parsing with HPSG for SRL
Yi Zhang | Rui Wang | Stephan Oepen
Proceedings of the Thirteenth Conference on Computational Natural Language Learning (CoNLL 2009): Shared Task

pdf
Inference Rules for Recognizing Textual Entailment
Georgiana Dinu | Rui Wang
Proceedings of the Eight International Conference on Computational Semantics

pdf
Inference Rules and their Application to Recognizing Textual Entailment
Georgiana Dinu | Rui Wang
Proceedings of the 12th Conference of the European Chapter of the ACL (EACL 2009)

pdf
Cross-Domain Dependency Parsing Using a Deep Linguistic Grammar
Yi Zhang | Rui Wang
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP

2008

pdf
Hybrid Learning of Dependency Structures from Heterogeneous Linguistic Resources
Yi Zhang | Rui Wang | Hans Uszkoreit
CoNLL 2008: Proceedings of the Twelfth Conference on Computational Natural Language Learning

2007

pdf
Recognizing Textual Entailment Using Sentence Similarity based on Dependency Tree Skeletons
Rui Wang | Günter Neumann
Proceedings of the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing

Search
Co-authors