Quoc Le

Also published as: Quoc V. Le


2021

pdf
STraTA: Self-Training with Task Augmentation for Better Few-shot Learning
Tu Vu | Minh-Thang Luong | Quoc Le | Grady Simon | Mohit Iyyer
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Despite their recent successes in tackling many NLP tasks, large-scale pre-trained language models do not perform as well in few-shot settings where only a handful of training examples are available. To address this shortcoming, we propose STraTA, which stands for Self-Training with Task Augmentation, an approach that builds on two key ideas for effective leverage of unlabeled data. First, STraTA uses task augmentation, a novel technique that synthesizes a large amount of data for auxiliary-task fine-tuning from target-task unlabeled texts. Second, STraTA performs self-training by further fine-tuning the strong base model created by task augmentation on a broad distribution of pseudo-labeled data. Our experiments demonstrate that STraTA can substantially improve sample efficiency across 12 few-shot benchmarks. Remarkably, on the SST-2 sentiment dataset, STraTA, with only 8 training examples per class, achieves comparable results to standard fine-tuning with 67K training examples. Our analyses reveal that task augmentation and self-training are both complementary and independently effective.

2020

pdf
Pre-Training Transformers as Energy-Based Cloze Models
Kevin Clark | Minh-Thang Luong | Quoc Le | Christopher D. Manning
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We introduce Electric, an energy-based cloze model for representation learning over text. Like BERT, it is a conditional generative model of tokens given their contexts. However, Electric does not use masking or output a full distribution over tokens that could occur in a context. Instead, it assigns a scalar energy score to each input token indicating how likely it is given its context. We train Electric using an algorithm based on noise-contrastive estimation and elucidate how this learning objective is closely related to the recently proposed ELECTRA pre-training method. Electric performs well when transferred to downstream tasks and is particularly effective at producing likelihood scores for text: it re-ranks speech recognition n-best lists better than language models and much faster than masked language models. Furthermore, it offers a clearer and more principled view of what ELECTRA learns during pre-training.

2019

pdf
Transformer-XL: Attentive Language Models beyond a Fixed-Length Context
Zihang Dai | Zhilin Yang | Yiming Yang | Jaime Carbonell | Quoc Le | Ruslan Salakhutdinov
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Transformers have a potential of learning longer-term dependency, but are limited by a fixed-length context in the setting of language modeling. We propose a novel neural architecture Transformer-XL that enables learning dependency beyond a fixed length without disrupting temporal coherence. It consists of a segment-level recurrence mechanism and a novel positional encoding scheme. Our method not only enables capturing longer-term dependency, but also resolves the context fragmentation problem. As a result, Transformer-XL learns dependency that is 80% longer than RNNs and 450% longer than vanilla Transformers, achieves better performance on both short and long sequences, and is up to 1,800+ times faster than vanilla Transformers during evaluation. Notably, we improve the state-of-the-art results of bpc/perplexity to 0.99 on enwiki8, 1.08 on text8, 18.3 on WikiText-103, 21.8 on One Billion Word, and 54.5 on Penn Treebank (without finetuning). When trained only on WikiText-103, Transformer-XL manages to generate reasonably coherent, novel text articles with thousands of tokens. Our code, pretrained models, and hyperparameters are available in both Tensorflow and PyTorch.

pdf
BAM! Born-Again Multi-Task Networks for Natural Language Understanding
Kevin Clark | Minh-Thang Luong | Urvashi Khandelwal | Christopher D. Manning | Quoc V. Le
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

It can be challenging to train multi-task neural networks that outperform or even match their single-task counterparts. To help address this, we propose using knowledge distillation where single-task models teach a multi-task model. We enhance this training with teacher annealing, a novel method that gradually transitions the model from distillation to supervised learning, helping the multi-task model surpass its single-task teachers. We evaluate our approach by multi-task fine-tuning BERT on the GLUE benchmark. Our method consistently improves over standard single-task and multi-task training.

pdf
Natural Questions: A Benchmark for Question Answering Research
Tom Kwiatkowski | Jennimaria Palomaki | Olivia Redfield | Michael Collins | Ankur Parikh | Chris Alberti | Danielle Epstein | Illia Polosukhin | Jacob Devlin | Kenton Lee | Kristina Toutanova | Llion Jones | Matthew Kelcey | Ming-Wei Chang | Andrew M. Dai | Jakob Uszkoreit | Quoc Le | Slav Petrov
Transactions of the Association for Computational Linguistics, Volume 7

We present the Natural Questions corpus, a question answering data set. Questions consist of real anonymized, aggregated queries issued to the Google search engine. An annotator is presented with a question along with a Wikipedia page from the top 5 search results, and annotates a long answer (typically a paragraph) and a short answer (one or more entities) if present on the page, or marks null if no long/short answer is present. The public release consists of 307,373 training examples with single annotations; 7,830 examples with 5-way annotations for development data; and a further 7,842 examples with 5-way annotated sequestered as test data. We present experiments validating quality of the data. We also describe analysis of 25-way annotations on 302 examples, giving insights into human variability on the annotation task. We introduce robust metrics for the purposes of evaluating question answering systems; demonstrate high human upper bounds on these metrics; and establish baseline results using competitive methods drawn from related literature.

2018

pdf
Semi-Supervised Sequence Modeling with Cross-View Training
Kevin Clark | Minh-Thang Luong | Christopher D. Manning | Quoc Le
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Unsupervised representation learning algorithms such as word2vec and ELMo improve the accuracy of many supervised NLP models, mainly because they can take advantage of large amounts of unlabeled text. However, the supervised models only learn from task-specific labeled data during the main training phase. We therefore propose Cross-View Training (CVT), a semi-supervised learning algorithm that improves the representations of a Bi-LSTM sentence encoder using a mix of labeled and unlabeled data. On labeled examples, standard supervised learning is used. On unlabeled examples, CVT teaches auxiliary prediction modules that see restricted views of the input (e.g., only part of a sentence) to match the predictions of the full model seeing the whole input. Since the auxiliary modules and the full model share intermediate representations, this in turn improves the full model. Moreover, we show that CVT is particularly effective when combined with multi-task learning. We evaluate CVT on five sequence tagging tasks, machine translation, and dependency parsing, achieving state-of-the-art results.

pdf
AirDialogue: An Environment for Goal-Oriented Dialogue Research
Wei Wei | Quoc Le | Andrew Dai | Jia Li
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recent progress in dialogue generation has inspired a number of studies on dialogue systems that are capable of accomplishing tasks through natural language interactions. A promising direction among these studies is the use of reinforcement learning techniques, such as self-play, for training dialogue agents. However, current datasets are limited in size, and the environment for training agents and evaluating progress is relatively unsophisticated. We present AirDialogue, a large dataset that contains 301,427 goal-oriented conversations. To collect this dataset, we create a context-generator which provides travel and flight restrictions. We then ask human annotators to play the role of a customer or an agent and interact with the goal of successfully booking a trip given the restrictions. Key to our environment is the ease of evaluating the success of the dialogue, which is achieved by using ground-truth states (e.g., the flight being booked) generated by the restrictions. Any dialogue agent that does not generate the correct states is considered to fail. Our experimental results indicate that state-of-the-art dialogue models can only achieve a score of 0.17 while humans can reach a score of 0.91, which suggests significant opportunities for future improvement.

2017

pdf
Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision
Chen Liang | Jonathan Berant | Quoc Le | Kenneth D. Forbus | Ni Lao
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Harnessing the statistical power of neural networks to perform language understanding and symbolic reasoning is difficult, when it requires executing efficient discrete operations against a large knowledge-base. In this work, we introduce a Neural Symbolic Machine, which contains (a) a neural “programmer”, i.e., a sequence-to-sequence model that maps language utterances to programs and utilizes a key-variable memory to handle compositionality (b) a symbolic “computer”, i.e., a Lisp interpreter that performs program execution, and helps find good programs by pruning the search space. We apply REINFORCE to directly optimize the task reward of this structured prediction problem. To train with weak supervision and improve the stability of REINFORCE, we augment it with an iterative maximum-likelihood training process. NSM outperforms the state-of-the-art on the WebQuestionsSP dataset when trained from question-answer pairs only, without requiring any feature engineering or domain-specific knowledge.

pdf
Learning to Skim Text
Adams Wei Yu | Hongrae Lee | Quoc Le
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recurrent Neural Networks are showing much promise in many sub-areas of natural language processing, ranging from document classification to machine translation to automatic question answering. Despite their promise, many recurrent models have to read the whole text word by word, making it slow to handle long documents. For example, it is difficult to use a recurrent network to read a book and answer questions about it. In this paper, we present an approach of reading text while skipping irrelevant information if needed. The underlying model is a recurrent network that learns how far to jump after reading a few words of the input text. We employ a standard policy gradient method to train the model to make discrete jumping decisions. In our benchmarks on four different tasks, including number prediction, sentiment analysis, news article classification and automatic Q&A, our proposed model, a modified LSTM with jumping, is up to 6 times faster than the standard sequential LSTM, while maintaining the same or even better accuracy.

pdf
Google’s Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation
Melvin Johnson | Mike Schuster | Quoc V. Le | Maxim Krikun | Yonghui Wu | Zhifeng Chen | Nikhil Thorat | Fernanda Viégas | Martin Wattenberg | Greg Corrado | Macduff Hughes | Jeffrey Dean
Transactions of the Association for Computational Linguistics, Volume 5

We propose a simple solution to use a single Neural Machine Translation (NMT) model to translate between multiple languages. Our solution requires no changes to the model architecture from a standard NMT system but instead introduces an artificial token at the beginning of the input sentence to specify the required target language. Using a shared wordpiece vocabulary, our approach enables Multilingual NMT systems using a single model. On the WMT’14 benchmarks, a single multilingual model achieves comparable performance for English→French and surpasses state-of-theart results for English→German. Similarly, a single multilingual model surpasses state-of-the-art results for French→English and German→English on WMT’14 and WMT’15 benchmarks, respectively. On production corpora, multilingual models of up to twelve language pairs allow for better translation of many individual pairs. Our models can also learn to perform implicit bridging between language pairs never seen explicitly during training, showing that transfer learning and zero-shot translation is possible for neural translation. Finally, we show analyses that hints at a universal interlingua representation in our models and also show some interesting examples when mixing languages.

pdf
Unsupervised Pretraining for Sequence to Sequence Learning
Prajit Ramachandran | Peter Liu | Quoc Le
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

This work presents a general unsupervised learning method to improve the accuracy of sequence to sequence (seq2seq) models. In our method, the weights of the encoder and decoder of a seq2seq model are initialized with the pretrained weights of two language models and then fine-tuned with labeled data. We apply this method to challenging benchmarks in machine translation and abstractive summarization and find that it significantly improves the subsequent supervised models. Our main result is that pretraining improves the generalization of seq2seq models. We achieve state-of-the-art results on the WMT English→German task, surpassing a range of methods using both phrase-based machine translation and neural machine translation. Our method achieves a significant improvement of 1.3 BLEU from th previous best models on both WMT’14 and WMT’15 English→German. We also conduct human evaluations on abstractive summarization and find that our method outperforms a purely supervised learning baseline in a statistically significant manner.

pdf
Massive Exploration of Neural Machine Translation Architectures
Denny Britz | Anna Goldie | Minh-Thang Luong | Quoc Le
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Neural Machine Translation (NMT) has shown remarkable progress over the past few years, with production systems now being deployed to end-users. As the field is moving rapidly, it has become unclear which elements of NMT architectures have a significant impact on translation quality. In this work, we present a large-scale analysis of the sensitivity of NMT architectures to common hyperparameters. We report empirical results and variance numbers for several hundred experimental runs, corresponding to over 250,000 GPU hours on a WMT English to German translation task. Our experiments provide practical insights into the relative importance of factors such as embedding size, network depth, RNN cell type, residual connections, attention mechanism, and decoding heuristics. As part of this contribution, we also release an open-source NMT framework in TensorFlow to make it easy for others to reproduce our results and perform their own experiments.

pdf
Effective Domain Mixing for Neural Machine Translation
Denny Britz | Quoc Le | Reid Pryzant
Proceedings of the Second Conference on Machine Translation

2015

pdf
Addressing the Rare Word Problem in Neural Machine Translation
Thang Luong | Ilya Sutskever | Quoc Le | Oriol Vinyals | Wojciech Zaremba
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

2014

pdf
Grounded Compositional Semantics for Finding and Describing Images with Sentences
Richard Socher | Andrej Karpathy | Quoc V. Le | Christopher D. Manning | Andrew Y. Ng
Transactions of the Association for Computational Linguistics, Volume 2

Previous work on Recursive Neural Networks (RNNs) shows that these models can produce compositional feature vectors for accurately representing and classifying sentences or images. However, the sentence vectors of previous models cannot accurately represent visually grounded meaning. We introduce the DT-RNN model which uses dependency trees to embed sentences into a vector space in order to retrieve images that are described by those sentences. Unlike previous RNN-based models which use constituency trees, DT-RNNs naturally focus on the action and agents in a sentence. They are better able to abstract from the details of word order and syntactic expression. DT-RNNs outperform other recursive and recurrent neural networks, kernelized CCA and a bag-of-words baseline on the tasks of finding an image that fits a sentence description and vice versa. They also give more similar representations to sentences that describe the same image.