Peter Hase


2022

pdf
When Can Models Learn From Explanations? A Formal Framework for Understanding the Roles of Explanation Data
Peter Hase | Mohit Bansal
Proceedings of the First Workshop on Learning with Natural Language Supervision

Many methods now exist for conditioning models on task instructions and user-provided explanations for individual data points. These methods show great promise for improving task performance of language models beyond what can be achieved by learning from individual (x,y) pairs. In this paper, we (1) provide a formal framework for characterizing approaches to learning from explanation data, and (2) we propose a synthetic task for studying how models learn from explanation data. In the first direction, we give graphical models for the available modeling approaches, in which explanation data can be used as model inputs, as targets, or as a prior. In the second direction, we introduce a carefully designed synthetic task with several properties making it useful for studying a model’s ability to learn from explanation data. Each data point in this binary classification task is accompanied by a string that is essentially an answer to the why question: “why does data point x have label y?” We aim to encourage research into this area by identifying key considerations for the modeling problem and providing an empirical testbed for theories of how models can best learn from explanation data.

2021

pdf
FastIF: Scalable Influence Functions for Efficient Model Interpretation and Debugging
Han Guo | Nazneen Rajani | Peter Hase | Mohit Bansal | Caiming Xiong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Influence functions approximate the “influences” of training data-points for test predictions and have a wide variety of applications. Despite the popularity, their computational cost does not scale well with model and training data size. We present FastIF, a set of simple modifications to influence functions that significantly improves their run-time. We use k-Nearest Neighbors (kNN) to narrow the search space down to a subset of good candidate data points, identify the configurations that best balance the speed-quality trade-off in estimating the inverse Hessian-vector product, and introduce a fast parallel variant. Our proposed method achieves about 80X speedup while being highly correlated with the original influence values. With the availability of the fast influence functions, we demonstrate their usefulness in four applications. First, we examine whether influential data-points can “explain” test time behavior using the framework of simulatability. Second, we visualize the influence interactions between training and test data-points. Third, we show that we can correct model errors by additional fine-tuning on certain influential data-points, improving the accuracy of a trained MultiNLI model by 2.5% on the HANS dataset. Finally, we experiment with a similar setup but fine-tuning on datapoints not seen during training, improving the model accuracy by 2.8% and 1.7% on HANS and ANLI datasets respectively. Overall, our fast influence functions can be efficiently applied to large models and datasets, and our experiments demonstrate the potential of influence functions in model interpretation and correcting model errors.

2020

pdf
Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior?
Peter Hase | Mohit Bansal
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Algorithmic approaches to interpreting machine learning models have proliferated in recent years. We carry out human subject tests that are the first of their kind to isolate the effect of algorithmic explanations on a key aspect of model interpretability, simulatability, while avoiding important confounding experimental factors. A model is simulatable when a person can predict its behavior on new inputs. Through two kinds of simulation tests involving text and tabular data, we evaluate five explanations methods: (1) LIME, (2) Anchor, (3) Decision Boundary, (4) a Prototype model, and (5) a Composite approach that combines explanations from each method. Clear evidence of method effectiveness is found in very few cases: LIME improves simulatability in tabular classification, and our Prototype method is effective in counterfactual simulation tests. We also collect subjective ratings of explanations, but we do not find that ratings are predictive of how helpful explanations are. Our results provide the first reliable and comprehensive estimates of how explanations influence simulatability across a variety of explanation methods and data domains. We show that (1) we need to be careful about the metrics we use to evaluate explanation methods, and (2) there is significant room for improvement in current methods.

pdf
Leakage-Adjusted Simulatability: Can Models Generate Non-Trivial Explanations of Their Behavior in Natural Language?
Peter Hase | Shiyue Zhang | Harry Xie | Mohit Bansal
Findings of the Association for Computational Linguistics: EMNLP 2020

Data collection for natural language (NL) understanding tasks has increasingly included human explanations alongside data points, allowing past works to introduce models that both perform a task and generate NL explanations for their outputs. Yet to date, model-generated explanations have been evaluated on the basis of surface-level similarities to human explanations, both through automatic metrics like BLEU and human evaluations. We argue that these evaluations are insufficient, since they fail to indicate whether explanations support actual model behavior (faithfulness), rather than simply match what a human would say (plausibility). In this work, we address the problem of evaluating explanations from the the model simulatability perspective. Our contributions are as follows: (1) We introduce a leakage-adjusted simulatability (LAS) metric for evaluating NL explanations, which measures how well explanations help an observer predict a model’s output, while controlling for how explanations can directly leak the output. We use a model as a proxy for a human observer, and validate this choice with two human subject experiments. (2) Using the CoS-E and e-SNLI datasets, we evaluate two existing generative graphical models and two new approaches; one rationalizing method we introduce achieves roughly human-level LAS scores. (3) Lastly, we frame explanation generation as a multi-agent game and optimize explanations for simulatability while penalizing label leakage, which can improve LAS scores.