Ning Zhang


2018

pdf
Visual Attention Model for Name Tagging in Multimodal Social Media
Di Lu | Leonardo Neves | Vitor Carvalho | Ning Zhang | Heng Ji
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Everyday billions of multimodal posts containing both images and text are shared in social media sites such as Snapchat, Twitter or Instagram. This combination of image and text in a single message allows for more creative and expressive forms of communication, and has become increasingly common in such sites. This new paradigm brings new challenges for natural language understanding, as the textual component tends to be shorter, more informal, and often is only understood if combined with the visual context. In this paper, we explore the task of name tagging in multimodal social media posts. We start by creating two new multimodal datasets: the first based on Twitter posts and the second based on Snapchat captions (exclusively submitted to public and crowd-sourced stories). We then propose a novel model architecture based on Visual Attention that not only provides deeper visual understanding on the decisions of the model, but also significantly outperforms other state-of-the-art baseline methods for this task.

2017

pdf
NITE: A Neural Inductive Teaching Framework for Domain Specific NER
Siliang Tang | Ning Zhang | Jinjiang Zhang | Fei Wu | Yueting Zhuang
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

In domain-specific NER, due to insufficient labeled training data, deep models usually fail to behave normally. In this paper, we proposed a novel Neural Inductive TEaching framework (NITE) to transfer knowledge from existing domain-specific NER models into an arbitrary deep neural network in a teacher-student training manner. NITE is a general framework that builds upon transfer learning and multiple instance learning, which collaboratively not only transfers knowledge to a deep student network but also reduces the noise from teachers. NITE can help deep learning methods to effectively utilize existing resources (i.e., models, labeled and unlabeled data) in a small domain. The experiment resulted on Disease NER proved that without using any labeled data, NITE can significantly boost the performance of a CNN-bidirectional LSTM-CRF NER neural network nearly over 30% in terms of F1-score.