Mirac Suzgun


2022

pdf
Monte Carlo Tree Search for Interpreting Stress in Natural Language
Kyle Swanson | Joy Hsu | Mirac Suzgun
Proceedings of the Second Workshop on Language Technology for Equality, Diversity and Inclusion

Natural language processing can facilitate the analysis of a person’s mental state from text they have written. Previous studies have developed models that can predict whether a person is experiencing a mental health condition from social media posts with high accuracy. Yet, these models cannot explain why the person is experiencing a particular mental state. In this work, we present a new method for explaining a person’s mental state from text using Monte Carlo tree search (MCTS). Our MCTS algorithm employs trained classification models to guide the search for key phrases that explain the writer’s mental state in a concise, interpretable manner. Furthermore, our algorithm can find both explanations that depend on the particular context of the text (e.g., a recent breakup) and those that are context-independent. Using a dataset of Reddit posts that exhibit stress, we demonstrate the ability of our MCTS algorithm to identify interpretable explanations for a person’s feeling of stress in both a context-dependent and context-independent manner.

2019

pdf
On Evaluating the Generalization of LSTM Models in Formal Languages
Mirac Suzgun | Yonatan Belinkov | Stuart M. Shieber
Proceedings of the Society for Computation in Linguistics (SCiL) 2019

pdf
LSTM Networks Can Perform Dynamic Counting
Mirac Suzgun | Yonatan Belinkov | Stuart Shieber | Sebastian Gehrmann
Proceedings of the Workshop on Deep Learning and Formal Languages: Building Bridges

In this paper, we systematically assess the ability of standard recurrent networks to perform dynamic counting and to encode hierarchical representations. All the neural models in our experiments are designed to be small-sized networks both to prevent them from memorizing the training sets and to visualize and interpret their behaviour at test time. Our results demonstrate that the Long Short-Term Memory (LSTM) networks can learn to recognize the well-balanced parenthesis language (Dyck-1) and the shuffles of multiple Dyck-1 languages, each defined over different parenthesis-pairs, by emulating simple real-time k-counter machines. To the best of our knowledge, this work is the first study to introduce the shuffle languages to analyze the computational power of neural networks. We also show that a single-layer LSTM with only one hidden unit is practically sufficient for recognizing the Dyck-1 language. However, none of our recurrent networks was able to yield a good performance on the Dyck-2 language learning task, which requires a model to have a stack-like mechanism for recognition.