Mengjie Zhao


2022

pdf
Modular and Parameter-Efficient Multimodal Fusion with Prompting
Sheng Liang | Mengjie Zhao | Hinrich Schuetze
Findings of the Association for Computational Linguistics: ACL 2022

Recent research has made impressive progress in large-scale multimodal pre-training. In the context of the rapid growth of model size, it is necessary to seek efficient and flexible methods other than finetuning. In this paper, we propose to use prompt vectors to align the modalities. Our method achieves comparable performance to several other multimodal fusion methods in low-resource settings. We further show that our method is modular and parameter-efficient for processing tasks involving two or more data modalities.

pdf
LMTurk: Few-Shot Learners as Crowdsourcing Workers in a Language-Model-as-a-Service Framework
Mengjie Zhao | Fei Mi | Yasheng Wang | Minglei Li | Xin Jiang | Qun Liu | Hinrich Schuetze
Findings of the Association for Computational Linguistics: NAACL 2022

Vast efforts have been devoted to creating high-performance few-shot learners, i.e., large-scale pretrained language models (PLMs) that perform well with little downstream task training data. Training PLMs has incurred significant cost, but utilizing the few-shot learners is still challenging due to their enormous size. This work focuses on a crucial question: How to make effective use of these few-shot learners? We propose LMTurk, a novel approach that treats few-shotlearners as crowdsourcing workers. The rationale is that crowdsourcing workers are in fact few-shot learners: They are shown a few illustrative examples to learn about a task and then start annotating. LMTurk employs few-shot learners built upon PLMs as workers. We show that the resulting annotations can be utilized to train models that solve the task well and are small enough to be deployable in practical scenarios. Active learning is integrated into LMTurk to reduce the amount of queries made to PLMs, minimizing the computational cost of running PLM inference passes. Altogether, LMTurk is an important step towards making effective use of current PLMs.

2021

pdf
A Closer Look at Few-Shot Crosslingual Transfer: The Choice of Shots Matters
Mengjie Zhao | Yi Zhu | Ehsan Shareghi | Ivan Vulić | Roi Reichart | Anna Korhonen | Hinrich Schütze
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Few-shot crosslingual transfer has been shown to outperform its zero-shot counterpart with pretrained encoders like multilingual BERT. Despite its growing popularity, little to no attention has been paid to standardizing and analyzing the design of few-shot experiments. In this work, we highlight a fundamental risk posed by this shortcoming, illustrating that the model exhibits a high degree of sensitivity to the selection of few shots. We conduct a large-scale experimental study on 40 sets of sampled few shots for six diverse NLP tasks across up to 40 languages. We provide an analysis of success and failure cases of few-shot transfer, which highlights the role of lexical features. Additionally, we show that a straightforward full model finetuning approach is quite effective for few-shot transfer, outperforming several state-of-the-art few-shot approaches. As a step towards standardizing few-shot crosslingual experimental designs, we make our sampled few shots publicly available.

pdf
Discrete and Soft Prompting for Multilingual Models
Mengjie Zhao | Hinrich Schütze
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

It has been shown for English that discrete and soft prompting perform strongly in few-shot learning with pretrained language models (PLMs). In this paper, we show that discrete and soft prompting perform better than finetuning in multilingual cases: Crosslingual transfer and in-language training of multilingual natural language inference. For example, with 48 English training examples, finetuning obtains 33.74% accuracy in crosslingual transfer, barely surpassing the majority baseline (33.33%). In contrast, discrete and soft prompting outperform finetuning, achieving 36.43% and 38.79%. We also demonstrate good performance of prompting with training data in multiple languages other than English.

2020

pdf
Masking as an Efficient Alternative to Finetuning for Pretrained Language Models
Mengjie Zhao | Tao Lin | Fei Mi | Martin Jaggi | Hinrich Schütze
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We present an efficient method of utilizing pretrained language models, where we learn selective binary masks for pretrained weights in lieu of modifying them through finetuning. Extensive evaluations of masking BERT, RoBERTa, and DistilBERT on eleven diverse NLP tasks show that our masking scheme yields performance comparable to finetuning, yet has a much smaller memory footprint when several tasks need to be inferred. Intrinsic evaluations show that representations computed by our binary masked language models encode information necessary for solving downstream tasks. Analyzing the loss landscape, we show that masking and finetuning produce models that reside in minima that can be connected by a line segment with nearly constant test accuracy. This confirms that masking can be utilized as an efficient alternative to finetuning.

pdf
Quantifying the Contextualization of Word Representations with Semantic Class Probing
Mengjie Zhao | Philipp Dufter | Yadollah Yaghoobzadeh | Hinrich Schütze
Findings of the Association for Computational Linguistics: EMNLP 2020

Pretrained language models achieve state-of-the-art results on many NLP tasks, but there are still many open questions about how and why they work so well. We investigate the contextualization of words in BERT. We quantify the amount of contextualization, i.e., how well words are interpreted in context, by studying the extent to which semantic classes of a word can be inferred from its contextualized embedding. Quantifying contextualization helps in understanding and utilizing pretrained language models. We show that the top layer representations support highly accurate inference of semantic classes; that the strongest contextualization effects occur in the lower layers; that local context is mostly sufficient for contextualizing words; and that top layer representations are more task-specific after finetuning while lower layer representations are more transferable. Finetuning uncovers task-related features, but pretrained knowledge about contextualization is still well preserved.

pdf
Continual Learning for Natural Language Generation in Task-oriented Dialog Systems
Fei Mi | Liangwei Chen | Mengjie Zhao | Minlie Huang | Boi Faltings
Findings of the Association for Computational Linguistics: EMNLP 2020

Natural language generation (NLG) is an essential component of task-oriented dialog systems. Despite the recent success of neural approaches for NLG, they are typically developed in an offline manner for particular domains. To better fit real-life applications where new data come in a stream, we study NLG in a “continual learning” setting to expand its knowledge to new domains or functionalities incrementally. The major challenge towards this goal is catastrophic forgetting, meaning that a continually trained model tends to forget the knowledge it has learned before. To this end, we propose a method called ARPER (Adaptively Regularized Prioritized Exemplar Replay) by replaying prioritized historical exemplars, together with an adaptive regularization technique based on Elastic Weight Consolidation. Extensive experiments to continually learn new domains and intents are conducted on MultiWoZ-2.0 to benchmark ARPER with a wide range of techniques. Empirical results demonstrate that ARPER significantly outperforms other methods by effectively mitigating the detrimental catastrophic forgetting issue.

2019

pdf
A Multilingual BPE Embedding Space for Universal Sentiment Lexicon Induction
Mengjie Zhao | Hinrich Schütze
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

We present a new method for sentiment lexicon induction that is designed to be applicable to the entire range of typological diversity of the world’s languages. We evaluate our method on Parallel Bible Corpus+ (PBC+), a parallel corpus of 1593 languages. The key idea is to use Byte Pair Encodings (BPEs) as basic units for multilingual embeddings. Through zero-shot transfer from English sentiment, we learn a seed lexicon for each language in the domain of PBC+. Through domain adaptation, we then generalize the domain-specific lexicon to a general one. We show – across typologically diverse languages in PBC+ – good quality of seed and general-domain sentiment lexicons by intrinsic and extrinsic and by automatic and human evaluation. We make freely available our code, seed sentiment lexicons for all 1593 languages and induced general-domain sentiment lexicons for 200 languages.

2018

pdf
Embedding Learning Through Multilingual Concept Induction
Philipp Dufter | Mengjie Zhao | Martin Schmitt | Alexander Fraser | Hinrich Schütze
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a new method for estimating vector space representations of words: embedding learning by concept induction. We test this method on a highly parallel corpus and learn semantic representations of words in 1259 different languages in a single common space. An extensive experimental evaluation on crosslingual word similarity and sentiment analysis indicates that concept-based multilingual embedding learning performs better than previous approaches.