Maciej Wiatrak


2022

pdf
On Masked Language Models for Contextual Link Prediction
Angus Brayne | Maciej Wiatrak | Dane Corneil
Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures

In the real world, many relational facts require context; for instance, a politician holds a given elected position only for a particular timespan. This context (the timespan) is typically ignored in knowledge graph link prediction tasks, or is leveraged by models designed specifically to make use of it (i.e. n-ary link prediction models). Here, we show that the task of n-ary link prediction is easily performed using language models, applied with a basic method for constructing cloze-style query sentences. We introduce a pre-training methodology based around an auxiliary entity-linked corpus that outperforms other popular pre-trained models like BERT, even with a smaller model. This methodology also enables n-ary link prediction without access to any n-ary training set, which can be invaluable in circumstances where expensive and time-consuming curation of n-ary knowledge graphs is not feasible. We achieve state-of-the-art performance on the primary n-ary link prediction dataset WD50K and on WikiPeople facts that include literals - typically ignored by knowledge graph embedding methods.

2020

pdf
Simple Hierarchical Multi-Task Neural End-To-End Entity Linking for Biomedical Text
Maciej Wiatrak | Juha Iso-Sipila
Proceedings of the 11th International Workshop on Health Text Mining and Information Analysis

Recognising and linking entities is a crucial first step to many tasks in biomedical text analysis, such as relation extraction and target identification. Traditionally, biomedical entity linking methods rely heavily on heuristic rules and predefined, often domain-specific features. The features try to capture the properties of entities and complex multi-step architectures to detect, and subsequently link entity mentions. We propose a significant simplification to the biomedical entity linking setup that does not rely on any heuristic methods. The system performs all the steps of the entity linking task jointly in either single or two stages. We explore the use of hierarchical multi-task learning, using mention recognition and entity typing tasks as auxiliary tasks. We show that hierarchical multi-task models consistently outperform single-task models when trained tasks are homogeneous. We evaluate the performance of our models on the biomedical entity linking benchmarks using MedMentions and BC5CDR datasets. We achieve state-of-theart results on the challenging MedMentions dataset, and comparable results on BC5CDR.