Lu Cheng


2022

pdf
Debiasing Word Embeddings with Nonlinear Geometry
Lu Cheng | Nayoung Kim | Huan Liu
Proceedings of the 29th International Conference on Computational Linguistics

Debiasing word embeddings has been largely limited to individual and independent social categories. However, real-world corpora typically present multiple social categories that possibly correlate or intersect with each other. For instance, “hair weaves” is stereotypically associated with African American females, but neither African American nor females alone. Therefore, this work studies biases associated with multiple social categories: joint biases induced by the union of different categories and intersectional biases that do not overlap with the biases of the constituent categories. We first empirically observe that individual biases intersect non-trivially (i.e., over a one-dimensional subspace). Drawing from the intersectional theory in social science and the linguistic theory, we then construct an intersectional subspace to debias for multiple social categories using the nonlinear geometry of individual biases. Empirical evaluations corroborate the efficacy of our approach.

2021

pdf
Mitigating Bias in Session-based Cyberbullying Detection: A Non-Compromising Approach
Lu Cheng | Ahmadreza Mosallanezhad | Yasin Silva | Deborah Hall | Huan Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The element of repetition in cyberbullying behavior has directed recent computational studies toward detecting cyberbullying based on a social media session. In contrast to a single text, a session may consist of an initial post and an associated sequence of comments. Yet, emerging efforts to enhance the performance of session-based cyberbullying detection have largely overlooked unintended social biases in existing cyberbullying datasets. For example, a session containing certain demographic-identity terms (e.g., “gay” or “black”) is more likely to be classified as an instance of cyberbullying. In this paper, we first show evidence of such bias in models trained on sessions collected from different social media platforms (e.g., Instagram). We then propose a context-aware and model-agnostic debiasing strategy that leverages a reinforcement learning technique, without requiring any extra resources or annotations apart from a pre-defined set of sensitive triggers commonly used for identifying cyberbullying instances. Empirical evaluations show that the proposed strategy can simultaneously alleviate the impacts of the unintended biases and improve the detection performance.