Kevin Chang


2022

pdf
Open Relation Modeling: Learning to Define Relations between Entities
Jie Huang | Kevin Chang | Jinjun Xiong | Wen-mei Hwu
Findings of the Association for Computational Linguistics: ACL 2022

Relations between entities can be represented by different instances, e.g., a sentence containing both entities or a fact in a Knowledge Graph (KG). However, these instances may not well capture the general relations between entities, may be difficult to understand by humans, even may not be found due to the incompleteness of the knowledge source. In this paper, we introduce the Open Relation Modeling problem - given two entities, generate a coherent sentence describing the relation between them. To solve this problem, we propose to teach machines to generate definition-like relation descriptions by letting them learn from defining entities. Specifically, we fine-tune Pre-trained Language Models (PLMs) to produce definitions conditioned on extracted entity pairs. To help PLMs reason between entities and provide additional relational knowledge to PLMs for open relation modeling, we incorporate reasoning paths in KGs and include a reasoning path selection mechanism. Experimental results show that our model can generate concise but informative relation descriptions that capture the representative characteristics of entities.

pdf
Domain Representative Keywords Selection: A Probabilistic Approach
Pritom Saha Akash | Jie Huang | Kevin Chang | Yunyao Li | Lucian Popa | ChengXiang Zhai
Findings of the Association for Computational Linguistics: ACL 2022

We propose a probabilistic approach to select a subset of a target domain representative keywords from a candidate set, contrasting with a context domain. Such a task is crucial for many downstream tasks in natural language processing. To contrast the target domain and the context domain, we adapt the two-component mixture model concept to generate a distribution of candidate keywords. It provides more importance to the distinctive keywords of the target domain than common keywords contrasting with the context domain. To support the representativeness of the selected keywords towards the target domain, we introduce an optimization algorithm for selecting the subset from the generated candidate distribution. We have shown that the optimization algorithm can be efficiently implemented with a near-optimal approximation guarantee. Finally, extensive experiments on multiple domains demonstrate the superiority of our approach over other baselines for the tasks of keyword summary generation and trending keywords selection.

pdf
CoVA: Context-aware Visual Attention for Webpage Information Extraction
Anurendra Kumar | Keval Morabia | William Wang | Kevin Chang | Alex Schwing
Proceedings of the Fifth Workshop on e-Commerce and NLP (ECNLP 5)

Webpage information extraction (WIE) is an important step to create knowledge bases. For this, classical WIE methods leverage the Document Object Model (DOM) tree of a website. However, use of the DOM tree poses significant challenges as context and appearance are encoded in an abstract manner. To address this challenge we propose to reformulate WIE as a context-aware Webpage Object Detection task. Specifically, we develop a Context-aware Visual Attention-based (CoVA) detection pipeline which combines appearance features with syntactical structure from the DOM tree. To study the approach we collect a new large-scale datase of e-commerce websites for which we manually annotate every web element with four labels: product price, product title, product image and others. On this dataset we show that the proposed CoVA approach is a new challenging baseline which improves upon prior state-of-the-art methods.

2021

pdf
Measuring Fine-Grained Domain Relevance of Terms: A Hierarchical Core-Fringe Approach
Jie Huang | Kevin Chang | JinJun Xiong | Wen-mei Hwu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We propose to measure fine-grained domain relevance– the degree that a term is relevant to a broad (e.g., computer science) or narrow (e.g., deep learning) domain. Such measurement is crucial for many downstream tasks in natural language processing. To handle long-tail terms, we build a core-anchored semantic graph, which uses core terms with rich description information to bridge the vast remaining fringe terms semantically. To support a fine-grained domain without relying on a matching corpus for supervision, we develop hierarchical core-fringe learning, which learns core and fringe terms jointly in a semi-supervised manner contextualized in the hierarchy of the domain. To reduce expensive human efforts, we employ automatic annotation and hierarchical positive-unlabeled learning. Our approach applies to big or small domains, covers head or tail terms, and requires little human effort. Extensive experiments demonstrate that our methods outperform strong baselines and even surpass professional human performance.

2020

pdf
Exploring Semantic Capacity of Terms
Jie Huang | Zilong Wang | Kevin Chang | Wen-mei Hwu | JinJun Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We introduce and study semantic capacity of terms. For example, the semantic capacity of artificial intelligence is higher than that of linear regression since artificial intelligence possesses a broader meaning scope. Understanding semantic capacity of terms will help many downstream tasks in natural language processing. For this purpose, we propose a two-step model to investigate semantic capacity of terms, which takes a large text corpus as input and can evaluate semantic capacity of terms if the text corpus can provide enough co-occurrence information of terms. Extensive experiments in three fields demonstrate the effectiveness and rationality of our model compared with well-designed baselines and human-level evaluations.