Jyun-Yu Jiang


“The Boating Store Had Its Best Sail Ever”: Pronunciation-attentive Contextualized Pun Recognition
Yichao Zhou | Jyun-Yu Jiang | Jieyu Zhao | Kai-Wei Chang | Wei Wang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Humor plays an important role in human languages and it is essential to model humor when building intelligence systems. Among different forms of humor, puns perform wordplay for humorous effects by employing words with double entendre and high phonetic similarity. However, identifying and modeling puns are challenging as puns usually involved implicit semantic or phonological tricks. In this paper, we propose Pronunciation-attentive Contextualized Pun Recognition (PCPR) to perceive human humor, detect if a sentence contains puns and locate them in the sentence. PCPR derives contextualized representation for each word in a sentence by capturing the association between the surrounding context and its corresponding phonetic symbols. Extensive experiments are conducted on two benchmark datasets. Results demonstrate that the proposed approach significantly outperforms the state-of-the-art methods in pun detection and location tasks. In-depth analyses verify the effectiveness and robustness of PCPR.

Long Document Ranking with Query-Directed Sparse Transformer
Jyun-Yu Jiang | Chenyan Xiong | Chia-Jung Lee | Wei Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

The computing cost of transformer self-attention often necessitates breaking long documents to fit in pretrained models in document ranking tasks. In this paper, we design Query-Directed Sparse attention that induces IR-axiomatic structures in transformer self-attention. Our model, QDS-Transformer, enforces the principle properties desired in ranking: local contextualization, hierarchical representation, and query-oriented proximity matching, while it also enjoys efficiency from sparsity. Experiments on four fully supervised and few-shot TREC document ranking benchmarks demonstrate the consistent and robust advantage of QDS-Transformer over previous approaches, as they either retrofit long documents into BERT or use sparse attention without emphasizing IR principles. We further quantify the computing complexity and demonstrates that our sparse attention with TVM implementation is twice more efficient that the fully-connected self-attention. All source codes, trained model, and predictions of this work are available at https://github.com/hallogameboy/QDS-Transformer.


Learning to Discriminate Perturbations for Blocking Adversarial Attacks in Text Classification
Yichao Zhou | Jyun-Yu Jiang | Kai-Wei Chang | Wei Wang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Adversarial attacks against machine learning models have threatened various real-world applications such as spam filtering and sentiment analysis. In this paper, we propose a novel framework, learning to discriminate perturbations (DISP), to identify and adjust malicious perturbations, thereby blocking adversarial attacks for text classification models. To identify adversarial attacks, a perturbation discriminator validates how likely a token in the text is perturbed and provides a set of potential perturbations. For each potential perturbation, an embedding estimator learns to restore the embedding of the original word based on the context and a replacement token is chosen based on approximate kNN search. DISP can block adversarial attacks for any NLP model without modifying the model structure or training procedure. Extensive experiments on two benchmark datasets demonstrate that DISP significantly outperforms baseline methods in blocking adversarial attacks for text classification. In addition, in-depth analysis shows the robustness of DISP across different situations.

Enhancing Air Quality Prediction with Social Media and Natural Language Processing
Jyun-Yu Jiang | Xue Sun | Wei Wang | Sean Young
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Accompanied by modern industrial developments, air pollution has already become a major concern for human health. Hence, air quality measures, such as the concentration of PM2.5, have attracted increasing attention. Even some studies apply historical measurements into air quality forecast, the changes of air quality conditions are still hard to monitor. In this paper, we propose to exploit social media and natural language processing techniques to enhance air quality prediction. Social media users are treated as social sensors with their findings and locations. After filtering noisy tweets using word selection and topic modeling, a deep learning model based on convolutional neural networks and over-tweet-pooling is proposed to enhance air quality prediction. We conduct experiments on 7-month real-world Twitter datasets in the five most heavily polluted states in the USA. The results show that our approach significantly improves air quality prediction over the baseline that does not use social media by 6.9% to 17.7% in macro-F1 scores.


Learning to Disentangle Interleaved Conversational Threads with a Siamese Hierarchical Network and Similarity Ranking
Jyun-Yu Jiang | Francine Chen | Yan-Ying Chen | Wei Wang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)

An enormous amount of conversation occurs online every day, such as on chat platforms where multiple conversations may take place concurrently. Interleaved conversations lead to difficulties in not only following discussions but also retrieving relevant information from simultaneous messages. Conversation disentanglement aims to separate intermingled messages into detached conversations. In this paper, we propose to leverage representation learning for conversation disentanglement. A Siamese hierarchical convolutional neural network (SHCNN), which integrates local and more global representations of a message, is first presented to estimate the conversation-level similarity between closely posted messages. With the estimated similarity scores, our algorithm for conversation identification by similarity ranking (CISIR) then derives conversations based on high-confidence message pairs and pairwise redundancy. Experiments were conducted with four publicly available datasets of conversations from Reddit and IRC channels. The experimental results show that our approach significantly outperforms comparative baselines in both pairwise similarity estimation and conversation disentanglement.