Jun Gao


2022

pdf
Improving Event Representation via Simultaneous Weakly Supervised Contrastive Learning and Clustering
Jun Gao | Wei Wang | Changlong Yu | Huan Zhao | Wilfred Ng | Ruifeng Xu
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Representations of events described in text are important for various tasks. In this work, we present SWCC: a Simultaneous Weakly supervised Contrastive learning and Clustering framework for event representation learning. SWCC learns event representations by making better use of co-occurrence information of events. Specifically, we introduce a weakly supervised contrastive learning method that allows us to consider multiple positives and multiple negatives, and a prototype-based clustering method that avoids semantically related events being pulled apart. For model training, SWCC learns representations by simultaneously performing weakly supervised contrastive learning and prototype-based clustering. Experimental results show that SWCC outperforms other baselines on Hard Similarity and Transitive Sentence Similarity tasks. In addition, a thorough analysis of the prototype-based clustering method demonstrates that the learned prototype vectors are able to implicitly capture various relations between events.

pdf
DD-TIG at Constraint@ACL2022: Multimodal Understanding and Reasoning for Role Labeling of Entities in Hateful Memes
Ziming Zhou | Han Zhao | Jingjing Dong | Jun Gao | Xiaolong Liu
Proceedings of the Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situations

The memes serve as an important tool in online communication, whereas some hateful memes endanger cyberspace by attacking certain people or subjects. Recent studies address hateful memes detection while further understanding of relationships of entities in memes remains unexplored. This paper presents our work at the Constraint@ACL2022 Shared Task: Hero, Villain and Victim: Dissecting harmful memes for semantic role labelling of entities. In particular, we propose our approach utilizing transformer-based multimodal models through a VCR method with data augmentation, continual pretraining, loss re-weighting, and ensemble learning. We describe the models used, the ways of preprocessing and experiments implementation. As a result, our best model achieves the Macro F1-score of 54.707 on the test set of this shared task.

pdf
Interpretable Proof Generation via Iterative Backward Reasoning
Hanhao Qu | Yu Cao | Jun Gao | Liang Ding | Ruifeng Xu
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

We present IBR, an Iterative Backward Reasoning model to solve the proof generation tasks on rule-based Question Answering (QA), where models are required to reason over a series of textual rules and facts to find out the related proof path and derive the final answer. We handle the limitations of existed works in two folds: 1) enhance the interpretability of reasoning procedures with detailed tracking, by predicting nodes and edges in the proof path iteratively backward from the question; 2) promote the efficiency and accuracy via reasoning on the elaborate representations of nodes and history paths, without any intermediate texts that may introduce external noise during proof generation. There are three main modules in IBR, QA and proof strategy prediction to obtain the answer and offer guidance for the following procedure; parent node prediction to determine a node in the existing proof that a new child node will link to; child node prediction to find out which new node will be added to the proof. Experiments on both synthetic and paraphrased datasets demonstrate that IBR has better in-domain performance as well as cross-domain transferability than several strong baselines. Our code and models are available at https://github. com/find-knowledge/IBR.

2021

pdf
REAM: An Enhancement Approach to Reference-based Evaluation Metrics for Open-domain Dialog Generation
Jun Gao | Wei Bi | Ruifeng Xu | Shuming Shi
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf
Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations
Jun Gao | Yuhan Liu | Haolin Deng | Wei Wang | Yu Cao | Jiachen Du | Ruifeng Xu
Findings of the Association for Computational Linguistics: EMNLP 2021

Current approaches to empathetic response generation focus on learning a model to predict an emotion label and generate a response based on this label and have achieved promising results. However, the emotion cause, an essential factor for empathetic responding, is ignored. The emotion cause is a stimulus for human emotions. Recognizing the emotion cause is helpful to better understand human emotions so as to generate more empathetic responses. To this end, we propose a novel framework that improves empathetic response generation by recognizing emotion cause in conversations. Specifically, an emotion reasoner is designed to predict a context emotion label and a sequence of emotion cause-oriented labels, which indicate whether the word is related to the emotion cause. Then we devise both hard and soft gated attention mechanisms to incorporate the emotion cause into response generation. Experiments show that incorporating emotion cause information improves the performance of the model on both emotion recognition and response generation.

2019

pdf
A Discrete CVAE for Response Generation on Short-Text Conversation
Jun Gao | Wei Bi | Xiaojiang Liu | Junhui Li | Guodong Zhou | Shuming Shi
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Neural conversation models such as encoder-decoder models are easy to generate bland and generic responses. Some researchers propose to use the conditional variational autoencoder (CVAE) which maximizes the lower bound on the conditional log-likelihood on a continuous latent variable. With different sampled latent variables, the model is expected to generate diverse responses. Although the CVAE-based models have shown tremendous potential, their improvement of generating high-quality responses is still unsatisfactory. In this paper, we introduce a discrete latent variable with an explicit semantic meaning to improve the CVAE on short-text conversation. A major advantage of our model is that we can exploit the semantic distance between the latent variables to maintain good diversity between the sampled latent variables. Accordingly, we propose a two-stage sampling approach to enable efficient diverse variable selection from a large latent space assumed in the short-text conversation task. Experimental results indicate that our model outperforms various kinds of generation models under both automatic and human evaluations and generates more diverse and informative responses.

pdf
Fine-Grained Sentence Functions for Short-Text Conversation
Wei Bi | Jun Gao | Xiaojiang Liu | Shuming Shi
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Sentence function is an important linguistic feature referring to a user’s purpose in uttering a specific sentence. The use of sentence function has shown promising results to improve the performance of conversation models. However, there is no large conversation dataset annotated with sentence functions. In this work, we collect a new Short-Text Conversation dataset with manually annotated SEntence FUNctions (STC-Sefun). Classification models are trained on this dataset to (i) recognize the sentence function of new data in a large corpus of short-text conversations; (ii) estimate a proper sentence function of the response given a test query. We later train conversation models conditioned on the sentence functions, including information retrieval-based and neural generative models. Experimental results demonstrate that the use of sentence functions can help improve the quality of the returned responses.

2018

pdf
Towards Less Generic Responses in Neural Conversation Models: A Statistical Re-weighting Method
Yahui Liu | Wei Bi | Jun Gao | Xiaojiang Liu | Jian Yao | Shuming Shi
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Sequence-to-sequence neural generation models have achieved promising performance on short text conversation tasks. However, they tend to generate generic/dull responses, leading to unsatisfying dialogue experience. We observe that in the conversation tasks, each query could have multiple responses, which forms a 1-to-n or m-to-n relationship in the view of the total corpus. The objective function used in standard sequence-to-sequence models will be dominated by loss terms with generic patterns. Inspired by this observation, we introduce a statistical re-weighting method that assigns different weights for the multiple responses of the same query, and trains the common neural generation model with the weights. Experimental results on a large Chinese dialogue corpus show that our method improves the acceptance rate of generated responses compared with several baseline models and significantly reduces the number of generated generic responses.

1997

pdf
Chinese Text Compression Using Chinese Language Information Processing [In Chinese]
Jun Gao | Xixian Chen
Proceedings of the 10th Research on Computational Linguistics International Conference

pdf
Probabilistic Word Classification Based on Context-Sensitive Binary Tree Method
Jun Gao | XiXian Chen
Fifth Workshop on Very Large Corpora