James Y. Huang


2022

pdf
Unified Semantic Typing with Meaningful Label Inference
James Y. Huang | Bangzheng Li | Jiashu Xu | Muhao Chen
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Semantic typing aims at classifying tokens or spans of interest in a textual context into semantic categories such as relations, entity types, and event types. The inferred labels of semantic categories meaningfully interpret how machines understand components of text. In this paper, we present UniST, a unified framework for semantic typing that captures label semantics by projecting both inputs and labels into a joint semantic embedding space. To formulate different lexical and relational semantic typing tasks as a unified task, we incorporate task descriptions to be jointly encoded with the input, allowing UniST to be adapted to different tasks without introducing task-specific model components. UniST optimizes a margin ranking loss such that the semantic relatedness of the input and labels is reflected from their embedding similarity. Our experiments demonstrate that UniST achieves strong performance across three semantic typing tasks: entity typing, relation classification and event typing. Meanwhile, UniST effectively transfers semantic knowledge of labels and substantially improves generalizability on inferring rarely seen and unseen types. In addition, multiple semantic typing tasks can be jointly trained within the unified framework, leading to a single compact multi-tasking model that performs comparably to dedicated single-task models, while offering even better transferability.

2021

pdf
Disentangling Semantics and Syntax in Sentence Embeddings with Pre-trained Language Models
James Y. Huang | Kuan-Hao Huang | Kai-Wei Chang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Pre-trained language models have achieved huge success on a wide range of NLP tasks. However, contextual representations from pre-trained models contain entangled semantic and syntactic information, and therefore cannot be directly used to derive useful semantic sentence embeddings for some tasks. Paraphrase pairs offer an effective way of learning the distinction between semantics and syntax, as they naturally share semantics and often vary in syntax. In this work, we present ParaBART, a semantic sentence embedding model that learns to disentangle semantics and syntax in sentence embeddings obtained by pre-trained language models. ParaBART is trained to perform syntax-guided paraphrasing, based on a source sentence that shares semantics with the target paraphrase, and a parse tree that specifies the target syntax. In this way, ParaBART learns disentangled semantic and syntactic representations from their respective inputs with separate encoders. Experiments in English show that ParaBART outperforms state-of-the-art sentence embedding models on unsupervised semantic similarity tasks. Additionally, we show that our approach can effectively remove syntactic information from semantic sentence embeddings, leading to better robustness against syntactic variation on downstream semantic tasks.