Huawei Shen


2022

pdf
Meta-CQG: A Meta-Learning Framework for Complex Question Generation over Knowledge Bases
Kun Zhang | Yunqi Qiu | Yuanzhuo Wang | Long Bai | Wei Li | Xuhui Jiang | Huawei Shen | Xueqi Cheng
Proceedings of the 29th International Conference on Computational Linguistics

Complex question generation over knowledge bases (KB) aims to generate natural language questions involving multiple KB relations or functional constraints. Existing methods train one encoder-decoder-based model to fit all questions. However, such a one-size-fits-all strategy may not perform well since complex questions exhibit an uneven distribution in many dimensions, such as question types, involved KB relations, and query structures, resulting in insufficient learning for long-tailed samples under different dimensions. To address this problem, we propose a meta-learning framework for complex question generation. The meta-trained generator can acquire universal and transferable meta-knowledge and quickly adapt to long-tailed samples through a few most related training samples. To retrieve similar samples for each input query, we design a self-supervised graph retriever to learn distributed representations for samples, and contrastive learning is leveraged to improve the learned representations. We conduct experiments on both WebQuestionsSP and ComplexWebQuestion, and results on long-tailed samples of different dimensions have been significantly improved, which demonstrates the effectiveness of the proposed framework.

2021

pdf
Transductive Learning for Unsupervised Text Style Transfer
Fei Xiao | Liang Pang | Yanyan Lan | Yan Wang | Huawei Shen | Xueqi Cheng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Unsupervised style transfer models are mainly based on an inductive learning approach, which represents the style as embeddings, decoder parameters, or discriminator parameters and directly applies these general rules to the test cases. However, the lacking of parallel corpus hinders the ability of these inductive learning methods on this task. As a result, it is likely to cause severe inconsistent style expressions, like ‘the salad is rude’. To tackle this problem, we propose a novel transductive learning approach in this paper, based on a retrieval-based context-aware style representation. Specifically, an attentional encoder-decoder with a retriever framework is utilized. It involves top-K relevant sentences in the target style in the transfer process. In this way, we can learn a context-aware style embedding to alleviate the above inconsistency problem. In this paper, both sparse (BM25) and dense retrieval functions (MIPS) are used, and two objective functions are designed to facilitate joint learning. Experimental results show that our method outperforms several strong baselines. The proposed transductive learning approach is general and effective to the task of unsupervised style transfer, and we will apply it to the other two typical methods in the future.

pdf
Adaptive Information Seeking for Open-Domain Question Answering
Yunchang Zhu | Liang Pang | Yanyan Lan | Huawei Shen | Xueqi Cheng
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Information seeking is an essential step for open-domain question answering to efficiently gather evidence from a large corpus. Recently, iterative approaches have been proven to be effective for complex questions, by recursively retrieving new evidence at each step. However, almost all existing iterative approaches use predefined strategies, either applying the same retrieval function multiple times or fixing the order of different retrieval functions, which cannot fulfill the diverse requirements of various questions. In this paper, we propose a novel adaptive information-seeking strategy for open-domain question answering, namely AISO. Specifically, the whole retrieval and answer process is modeled as a partially observed Markov decision process, where three types of retrieval operations (e.g., BM25, DPR, and hyperlink) and one answer operation are defined as actions. According to the learned policy, AISO could adaptively select a proper retrieval action to seek the missing evidence at each step, based on the collected evidence and the reformulated query, or directly output the answer when the evidence set is sufficient for the question. Experiments on SQuAD Open and HotpotQA fullwiki, which serve as single-hop and multi-hop open-domain QA benchmarks, show that AISO outperforms all baseline methods with predefined strategies in terms of both retrieval and answer evaluations.