Guodong Long


2022

pdf
ClarET: Pre-training a Correlation-Aware Context-To-Event Transformer for Event-Centric Generation and Classification
Yucheng Zhou | Tao Shen | Xiubo Geng | Guodong Long | Daxin Jiang
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Generating new events given context with correlated ones plays a crucial role in many event-centric reasoning tasks. Existing works either limit their scope to specific scenarios or overlook event-level correlations. In this paper, we propose to pre-train a general Correlation-aware context-to-Event Transformer (ClarET) for event-centric reasoning. To achieve this, we propose three novel event-centric objectives, i.e., whole event recovering, contrastive event-correlation encoding and prompt-based event locating, which highlight event-level correlations with effective training. The proposed ClarET is applicable to a wide range of event-centric reasoning scenarios, considering its versatility of (i) event-correlation types (e.g., causal, temporal, contrast), (ii) application formulations (i.e., generation and classification), and (iii) reasoning types (e.g., abductive, counterfactual and ending reasoning). Empirical fine-tuning results, as well as zero- and few-shot learning, on 9 benchmarks (5 generation and 4 classification tasks covering 4 reasoning types with diverse event correlations), verify its effectiveness and generalization ability.

pdf
Hierarchical Relation-Guided Type-Sentence Alignment for Long-Tail Relation Extraction with Distant Supervision
Yang Li | Guodong Long | Tao Shen | Jing Jiang
Findings of the Association for Computational Linguistics: NAACL 2022

Distant supervision uses triple facts in knowledge graphs to label a corpus for relation extraction, leading to wrong labeling and long-tail problems. Some works use the hierarchy of relations for knowledge transfer to long-tail relations. However, a coarse-grained relation often implies only an attribute (e.g., domain or topic) of the distant fact, making it hard to discriminate relations based solely on sentence semantics. One solution is resorting to entity types, but open questions remain about how to fully leverage the information of entity types and how to align multi-granular entity types with sentences. In this work, we propose a novel model to enrich distantly-supervised sentences with entity types. It consists of (1) a pairwise type-enriched sentence encoding module injecting both context-free and -related backgrounds to alleviate sentence-level wrong labeling, and (2) a hierarchical type-sentence alignment module enriching a sentence with the triple fact’s basic attributes to support long-tail relations. Our model achieves new state-of-the-art results in overall and long-tail performance on benchmarks.

pdf
Understand before Answer: Improve Temporal Reading Comprehension via Precise Question Understanding
Hao Huang | Xiubo Geng | Guodong Long | Daxin Jiang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

This work studies temporal reading comprehension (TRC), which reads a free-text passage and answers temporal ordering questions. Precise question understanding is critical for temporal reading comprehension. For example, the question “What happened before the victory” and “What happened after the victory” share almost all words except one, while their answers are totally different. Moreover, even if two questions query about similar temporal relations, different varieties might also lead to various answers. For example, although both the question “What usually happened during the press release?” and “What might happen during the press release” query events which happen after “the press release”, they convey divergent semantics.To this end, we propose a novel reading comprehension approach with precise question understanding. Specifically, a temporal ordering question is embedded into two vectors to capture the referred event and the temporal relation. Then we evaluate the temporal relation between candidate events and the referred event based on that. Such fine-grained representations offer two benefits. First, it enables a better understanding of the question by focusing on different elements of a question. Second, it provides good interpretability when evaluating temporal relations. Furthermore, we also harness an auxiliary contrastive loss for representation learning of temporal relations, which aims to distinguish relations with subtle but critical changes. The proposed approach outperforms strong baselines and achieves state-of-the-art performance on the TORQUE dataset. It also increases the accuracy of four pre-trained language models (BERT base, BERT large, RoBERTa base, and RoBETRa large), demonstrating its generic effectiveness on divergent models.

2021

pdf
Eliminating Sentiment Bias for Aspect-Level Sentiment Classification with Unsupervised Opinion Extraction
Bo Wang | Tao Shen | Guodong Long | Tianyi Zhou | Yi Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interpret why a sentiment polarity is derived for the aspect. To address this problem, recent works fine-tune pre-trained Transformer encoders for ALSC to extract an aspect-centric dependency tree that can locate the opinion words. However, the induced opinion words only provide an intuitive cue far below human-level interpretability. Besides, the pre-trained encoder tends to internalize an aspect’s intrinsic sentiment, causing sentiment bias and thus affecting model performance. In this paper, we propose a span-based anti-bias aspect representation learning framework. It first eliminates the sentiment bias in the aspect embedding by adversarial learning against aspects’ prior sentiment. Then, it aligns the distilled opinion candidates with the aspect by span-based dependency modeling to highlight the interpretable opinion terms. Our method achieves new state-of-the-art performance on five benchmarks, with the capability of unsupervised opinion extraction.

pdf
Reasoning over Entity-Action-Location Graph for Procedural Text Understanding
Hao Huang | Xiubo Geng | Jian Pei | Guodong Long | Daxin Jiang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Procedural text understanding aims at tracking the states (e.g., create, move, destroy) and locations of the entities mentioned in a given paragraph. To effectively track the states and locations, it is essential to capture the rich semantic relations between entities, actions, and locations in the paragraph. Although recent works have achieved substantial progress, most of them focus on leveraging the inherent constraints or incorporating external knowledge for state prediction. The rich semantic relations in the given paragraph are largely overlooked. In this paper, we propose a novel approach (REAL) to procedural text understanding, where we build a general framework to systematically model the entity-entity, entity-action, and entity-location relations using a graph neural network. We further develop algorithms for graph construction, representation learning, and state and location tracking. We evaluate the proposed approach on two benchmark datasets, ProPara, and Recipes. The experimental results show that our method outperforms strong baselines by a large margin, i.e., 5.0% on ProPara and 3.2% on Recipes, illustrating the utility of semantic relations and the effectiveness of the graph-based reasoning model.

2020

pdf
Exploiting Structured Knowledge in Text via Graph-Guided Representation Learning
Tao Shen | Yi Mao | Pengcheng He | Guodong Long | Adam Trischler | Weizhu Chen
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In this work, we aim at equipping pre-trained language models with structured knowledge. We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs. Building upon entity-level masked language models, our first contribution is an entity masking scheme that exploits relational knowledge underlying the text. This is fulfilled by using a linked knowledge graph to select informative entities and then masking their mentions. In addition, we use knowledge graphs to obtain distractors for the masked entities, and propose a novel distractor-suppressed ranking objective that is optimized jointly with masked language model. In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training, to inject language models with structured knowledge via learning from raw text. It is more efficient than retrieval-based methods that perform entity linking and integration during finetuning and inference, and generalizes more effectively than the methods that directly learn from concatenated graph triples. Experiments show that our proposed model achieves improved performance on five benchmarks, including question answering and knowledge base completion.

pdf
RatE: Relation-Adaptive Translating Embedding for Knowledge Graph Completion
Hao Huang | Guodong Long | Tao Shen | Jing Jiang | Chengqi Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Many graph embedding approaches have been proposed for knowledge graph completion via link prediction. Among those, translating embedding approaches enjoy the advantages of light-weight structure, high efficiency and great interpretability. Especially when extended to complex vector space, they show the capability in handling various relation patterns including symmetry, antisymmetry, inversion and composition. However, previous translating embedding approaches defined in complex vector space suffer from two main issues: 1) representing and modeling capacities of the model are limited by the translation function with rigorous multiplication of two complex numbers; and 2) embedding ambiguity caused by one-to-many relations is not explicitly alleviated. In this paper, we propose a relation-adaptive translation function built upon a novel weighted product in complex space, where the weights are learnable, relation-specific and independent to embedding size. The translation function only requires eight more scalar parameters each relation, but improves expressive power and alleviates embedding ambiguity problem. Based on the function, we then present our Relation-adaptive translating Embedding (RatE) approach to score each graph triple. Moreover, a novel negative sampling method is proposed to utilize both prior knowledge and self-adversarial learning for effective optimization. Experiments verify RatE achieves state-of-the-art performance on four link prediction benchmarks.

pdf
Improving Long-Tail Relation Extraction with Collaborating Relation-Augmented Attention
Yang Li | Tao Shen | Guodong Long | Jing Jiang | Tianyi Zhou | Chengqi Zhang
Proceedings of the 28th International Conference on Computational Linguistics

Wrong labeling problem and long-tail relations are two main challenges caused by distant supervision in relation extraction. Recent works alleviate the wrong labeling by selective attention via multi-instance learning, but cannot well handle long-tail relations even if hierarchies of the relations are introduced to share knowledge. In this work, we propose a novel neural network, Collaborating Relation-augmented Attention (CoRA), to handle both the wrong labeling and long-tail relations. Particularly, we first propose relation-augmented attention network as base model. It operates on sentence bag with a sentence-to-relation attention to minimize the effect of wrong labeling. Then, facilitated by the proposed base model, we introduce collaborating relation features shared among relations in the hierarchies to promote the relation-augmenting process and balance the training data for long-tail relations. Besides the main training objective to predict the relation of a sentence bag, an auxiliary objective is utilized to guide the relation-augmenting process for a more accurate bag-level representation. In the experiments on the popular benchmark dataset NYT, the proposed CoRA improves the prior state-of-the-art performance by a large margin in terms of Precision@N, AUC and Hits@K. Further analyses verify its superior capability in handling long-tail relations in contrast to the competitors.

2019

pdf
Multi-Task Learning for Conversational Question Answering over a Large-Scale Knowledge Base
Tao Shen | Xiubo Geng | Tao Qin | Daya Guo | Duyu Tang | Nan Duan | Guodong Long | Daxin Jiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We consider the problem of conversational question answering over a large-scale knowledge base. To handle huge entity vocabulary of a large-scale knowledge base, recent neural semantic parsing based approaches usually decompose the task into several subtasks and then solve them sequentially, which leads to following issues: 1) errors in earlier subtasks will be propagated and negatively affect downstream ones; and 2) each subtask cannot naturally share supervision signals with others. To tackle these issues, we propose an innovative multi-task learning framework where a pointer-equipped semantic parsing model is designed to resolve coreference in conversations, and naturally empower joint learning with a novel type-aware entity detection model. The proposed framework thus enables shared supervisions and alleviates the effect of error propagation. Experiments on a large-scale conversational question answering dataset containing 1.6M question answering pairs over 12.8M entities show that the proposed framework improves overall F1 score from 67% to 79% compared with previous state-of-the-art work.

pdf
Tensorized Self-Attention: Efficiently Modeling Pairwise and Global Dependencies Together
Tao Shen | Tianyi Zhou | Guodong Long | Jing Jiang | Chengqi Zhang
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)

Neural networks equipped with self-attention have parallelizable computation, light-weight structure, and the ability to capture both long-range and local dependencies. Further, their expressive power and performance can be boosted by using a vector to measure pairwise dependency, but this requires to expand the alignment matrix to a tensor, which results in memory and computation bottlenecks. In this paper, we propose a novel attention mechanism called “Multi-mask Tensorized Self-Attention” (MTSA), which is as fast and as memory-efficient as a CNN, but significantly outperforms previous CNN-/RNN-/attention-based models. MTSA 1) captures both pairwise (token2token) and global (source2token) dependencies by a novel compatibility function composed of dot-product and additive attentions, 2) uses a tensor to represent the feature-wise alignment scores for better expressive power but only requires parallelizable matrix multiplications, and 3) combines multi-head with multi-dimensional attentions, and applies a distinct positional mask to each head (subspace), so the memory and computation can be distributed to multiple heads, each with sequential information encoded independently. The experiments show that a CNN/RNN-free model based on MTSA achieves state-of-the-art or competitive performance on nine NLP benchmarks with compelling memory- and time-efficiency.