Fang Guo


Mere Contrastive Learning for Cross-Domain Sentiment Analysis
Yun Luo | Fang Guo | Zihan Liu | Yue Zhang
Proceedings of the 29th International Conference on Computational Linguistics

Cross-domain sentiment analysis aims to predict the sentiment of texts in the target domain using the model trained on the source domain to cope with the scarcity of labeled data. Previous studies are mostly cross-entropy-based methods for the task, which suffer from instability and poor generalization. In this paper, we explore contrastive learning on the cross-domain sentiment analysis task. We propose a modified contrastive objective with in-batch negative samples so that the sentence representations from the same class can be pushed close while those from the different classes become further apart in the latent space. Experiments on two widely used datasets show that our model can achieve state-of-the-art performance in both cross-domain and multi-domain sentiment analysis tasks. Meanwhile, visualizations demonstrate the effectiveness of transferring knowledge learned in the source domain to the target domain and the adversarial test verifies the robustness of our model.


Weakly-Supervised Aspect-Based Sentiment Analysis via Joint Aspect-Sentiment Topic Embedding
Jiaxin Huang | Yu Meng | Fang Guo | Heng Ji | Jiawei Han
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Aspect-based sentiment analysis of review texts is of great value for understanding user feedback in a fine-grained manner. It has in general two sub-tasks: (i) extracting aspects from each review, and (ii) classifying aspect-based reviews by sentiment polarity. In this paper, we propose a weakly-supervised approach for aspect-based sentiment analysis, which uses only a few keywords describing each aspect/sentiment without using any labeled examples. Existing methods are either designed only for one of the sub-tasks, or are based on topic models that may contain overlapping concepts. We propose to first learn <sentiment, aspect> joint topic embeddings in the word embedding space by imposing regularizations to encourage topic distinctiveness, and then use neural models to generalize the word-level discriminative information by pre-training the classifiers with embedding-based predictions and self-training them on unlabeled data. Our comprehensive performance analysis shows that our method generates quality joint topics and outperforms the baselines significantly (7.4% and 5.1% F1-score gain on average for aspect and sentiment classification respectively) on benchmark datasets.