Ekin Akyürek

Also published as: Ekin Akyurek


2021

pdf
Lexicon Learning for Few Shot Sequence Modeling
Ekin Akyurek | Jacob Andreas
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Sequence-to-sequence transduction is the core problem in language processing applications as diverse as semantic parsing, machine translation, and instruction following. The neural network models that provide the dominant solution to these problems are brittle, especially in low-resource settings: they fail to generalize correctly or systematically from small datasets. Past work has shown that many failures of systematic generalization arise from neural models’ inability to disentangle lexical phenomena from syntactic ones. To address this, we augment neural decoders with a lexical translation mechanism that generalizes existing copy mechanisms to incorporate learned, decontextualized, token-level translation rules. We describe how to initialize this mechanism using a variety of lexicon learning algorithms, and show that it improves systematic generalization on a diverse set of sequence modeling tasks drawn from cognitive science, formal semantics, and machine translation.

2019

pdf
Morphological Analysis Using a Sequence Decoder
Ekin Akyürek | Erenay Dayanık | Deniz Yuret
Transactions of the Association for Computational Linguistics, Volume 7

We introduce Morse, a recurrent encoder-decoder model that produces morphological analyses of each word in a sentence. The encoder turns the relevant information about the word and its context into a fixed size vector representation and the decoder generates the sequence of characters for the lemma followed by a sequence of individual morphological features. We show that generating morphological features individually rather than as a combined tag allows the model to handle rare or unseen tags and to outperform whole-tag models. In addition, generating morphological features as a sequence rather than, for example, an unordered set allows our model to produce an arbitrary number of features that represent multiple inflectional groups in morphologically complex languages. We obtain state-of-the-art results in nine languages of different morphological complexity under low-resource, high-resource, and transfer learning settings. We also introduce TrMor2018, a new high-accuracy Turkish morphology data set. Our Morse implementation and the TrMor2018 data set are available online to support future research.1See https://github.com/ai-ku/Morse.jl for a Morse implementation in Julia/Knet (Yuret, 2016) and https://github.com/ai-ku/TrMor2018 for the new Turkish data set.