Chenlong Hu


2021

pdf
One-class Text Classification with Multi-modal Deep Support Vector Data Description
Chenlong Hu | Yukun Feng | Hidetaka Kamigaito | Hiroya Takamura | Manabu Okumura
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

This work presents multi-modal deep SVDD (mSVDD) for one-class text classification. By extending the uni-modal SVDD to a multiple modal one, we build mSVDD with multiple hyperspheres, that enable us to build a much better description for target one-class data. Additionally, the end-to-end architecture of mSVDD can jointly handle neural feature learning and one-class text learning. We also introduce a mechanism for incorporating negative supervision in the absence of real negative data, which can be beneficial to the mSVDD model. We conduct experiments on Reuters and 20 Newsgroup datasets, and the experimental results demonstrate that mSVDD outperforms uni-modal SVDD and mSVDD can get further improvements when negative supervision is incorporated.

pdf
Improving Character-Aware Neural Language Model by Warming up Character Encoder under Skip-gram Architecture
Yukun Feng | Chenlong Hu | Hidetaka Kamigaito | Hiroya Takamura | Manabu Okumura
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Character-aware neural language models can capture the relationship between words by exploiting character-level information and are particularly effective for languages with rich morphology. However, these models are usually biased towards information from surface forms. To alleviate this problem, we propose a simple and effective method to improve a character-aware neural language model by forcing a character encoder to produce word-based embeddings under Skip-gram architecture in a warm-up step without extra training data. We empirically show that the resulting character-aware neural language model achieves obvious improvements of perplexity scores on typologically diverse languages, that contain many low-frequency or unseen words.

pdf
Abstractive Document Summarization with Word Embedding Reconstruction
Jingyi You | Chenlong Hu | Hidetaka Kamigaito | Hiroya Takamura | Manabu Okumura
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Neural sequence-to-sequence (Seq2Seq) models and BERT have achieved substantial improvements in abstractive document summarization (ADS) without and with pre-training, respectively. However, they sometimes repeatedly attend to unimportant source phrases while mistakenly ignore important ones. We present reconstruction mechanisms on two levels to alleviate this issue. The sequence-level reconstructor reconstructs the whole document from the hidden layer of the target summary, while the word embedding-level one rebuilds the average of word embeddings of the source at the target side to guarantee that as much critical information is included in the summary as possible. Based on the assumption that inverse document frequency (IDF) measures how important a word is, we further leverage the IDF weights in our embedding-level reconstructor. The proposed frameworks lead to promising improvements for ROUGE metrics and human rating on both the CNN/Daily Mail and Newsroom summarization datasets.

2020

pdf
A Simple and Effective Usage of Word Clusters for CBOW Model
Yukun Feng | Chenlong Hu | Hidetaka Kamigaito | Hiroya Takamura | Manabu Okumura
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

We propose a simple and effective method for incorporating word clusters into the Continuous Bag-of-Words (CBOW) model. Specifically, we propose to replace infrequent input and output words in CBOW model with their clusters. The resulting cluster-incorporated CBOW model produces embeddings of frequent words and a small amount of cluster embeddings, which will be fine-tuned in downstream tasks. We empirically show our replacing method works well on several downstream tasks. Through our analysis, we show that our method might be also useful for other similar models which produce word embeddings.