Chanhee Lee


2021

pdf
BTS: Back TranScription for Speech-to-Text Post-Processor using Text-to-Speech-to-Text
Chanjun Park | Jaehyung Seo | Seolhwa Lee | Chanhee Lee | Hyeonseok Moon | Sugyeong Eo | Heuiseok Lim
Proceedings of the 8th Workshop on Asian Translation (WAT2021)

With the growing popularity of smart speakers, such as Amazon Alexa, speech is becoming one of the most important modes of human-computer interaction. Automatic speech recognition (ASR) is arguably the most critical component of such systems, as errors in speech recognition propagate to the downstream components and drastically degrade the user experience. A simple and effective way to improve the speech recognition accuracy is to apply automatic post-processor to the recognition result. However, training a post-processor requires parallel corpora created by human annotators, which are expensive and not scalable. To alleviate this problem, we propose Back TranScription (BTS), a denoising-based method that can create such corpora without human labor. Using a raw corpus, BTS corrupts the text using Text-to-Speech (TTS) and Speech-to-Text (STT) systems. Then, a post-processing model can be trained to reconstruct the original text given the corrupted input. Quantitative and qualitative evaluations show that a post-processor trained using our approach is highly effective in fixing non-trivial speech recognition errors such as mishandling foreign words. We present the generated parallel corpus and post-processing platform to make our results publicly available.

pdf
Capturing Speaker Incorrectness: Speaker-Focused Post-Correction for Abstractive Dialogue Summarization
Dongyub Lee | Jungwoo Lim | Taesun Whang | Chanhee Lee | Seungwoo Cho | Mingun Park | Heuiseok Lim
Proceedings of the Third Workshop on New Frontiers in Summarization

In this paper, we focus on improving the quality of the summary generated by neural abstractive dialogue summarization systems. Even though pre-trained language models generate well-constructed and promising results, it is still challenging to summarize the conversation of multiple participants since the summary should include a description of the overall situation and the actions of each speaker. This paper proposes self-supervised strategies for speaker-focused post-correction in abstractive dialogue summarization. Specifically, our model first discriminates which type of speaker correction is required in a draft summary and then generates a revised summary according to the required type. Experimental results show that our proposed method adequately corrects the draft summaries, and the revised summaries are significantly improved in both quantitative and qualitative evaluations.

2018

pdf
Rich Character-Level Information for Korean Morphological Analysis and Part-of-Speech Tagging
Andrew Matteson | Chanhee Lee | Youngbum Kim | Heuiseok Lim
Proceedings of the 27th International Conference on Computational Linguistics

Due to the fact that Korean is a highly agglutinative, character-rich language, previous work on Korean morphological analysis typically employs the use of sub-character features known as graphemes or otherwise utilizes comprehensive prior linguistic knowledge (i.e., a dictionary of known morphological transformation forms, or actions). These models have been created with the assumption that character-level, dictionary-less morphological analysis was intractable due to the number of actions required. We present, in this study, a multi-stage action-based model that can perform morphological transformation and part-of-speech tagging using arbitrary units of input and apply it to the case of character-level Korean morphological analysis. Among models that do not employ prior linguistic knowledge, we achieve state-of-the-art word and sentence-level tagging accuracy with the Sejong Korean corpus using our proposed data-driven Bi-LSTM model.

pdf
Character-Level Feature Extraction with Densely Connected Networks
Chanhee Lee | Young-Bum Kim | Dongyub Lee | Heuiseok Lim
Proceedings of the 27th International Conference on Computational Linguistics

Generating character-level features is an important step for achieving good results in various natural language processing tasks. To alleviate the need for human labor in generating hand-crafted features, methods that utilize neural architectures such as Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) to automatically extract such features have been proposed and have shown great results. However, CNN generates position-independent features, and RNN is slow since it needs to process the characters sequentially. In this paper, we propose a novel method of using a densely connected network to automatically extract character-level features. The proposed method does not require any language or task specific assumptions, and shows robustness and effectiveness while being faster than CNN- or RNN-based methods. Evaluating this method on three sequence labeling tasks - slot tagging, Part-of-Speech (POS) tagging, and Named-Entity Recognition (NER) - we obtain state-of-the-art performance with a 96.62 F1-score and 97.73% accuracy on slot tagging and POS tagging, respectively, and comparable performance to the state-of-the-art 91.13 F1-score on NER.