Bo Wu


2022

pdf
Eureka: Neural Insight Learning for Knowledge Graph Reasoning
Alex X. Zhang | Xun Liang | Bo Wu | Xiangping Zheng | Sensen Zhang | Yuhui Guo | Jun Wang | Xinyao Liu
Proceedings of the 29th International Conference on Computational Linguistics

The human recognition system has presented the remarkable ability to effortlessly learn novel knowledge from only a few trigger events based on prior knowledge, which is called insight learning. Mimicking such behavior on Knowledge Graph Reasoning (KGR) is an interesting and challenging research problem with many practical applications. Simultaneously, existing works, such as knowledge embedding and few-shot learning models, have been limited to conducting KGR in either “seen-to-seen” or “unseen-to-unseen” scenarios. To this end, we propose a neural insight learning framework named Eureka to bridge the “seen” to “unseen” gap. Eureka is empowered to learn the seen relations with sufficient training triples while providing the flexibility of learning unseen relations given only one trigger without sacrificing its performance on seen relations. Eureka meets our expectation of the model to acquire seen and unseen relations at no extra cost, and eliminate the need to retrain when encountering emerging unseen relations. Experimental results on two real-world datasets demonstrate that the proposed framework also outperforms various state-of-the-art baselines on datasets of both seen and unseen relations.

2020

pdf
GAIA: A Fine-grained Multimedia Knowledge Extraction System
Manling Li | Alireza Zareian | Ying Lin | Xiaoman Pan | Spencer Whitehead | Brian Chen | Bo Wu | Heng Ji | Shih-Fu Chang | Clare Voss | Daniel Napierski | Marjorie Freedman
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

We present the first comprehensive, open source multimedia knowledge extraction system that takes a massive stream of unstructured, heterogeneous multimedia data from various sources and languages as input, and creates a coherent, structured knowledge base, indexing entities, relations, and events, following a rich, fine-grained ontology. Our system, GAIA, enables seamless search of complex graph queries, and retrieves multimedia evidence including text, images and videos. GAIA achieves top performance at the recent NIST TAC SM-KBP2019 evaluation. The system is publicly available at GitHub and DockerHub, with a narrated video that documents the system.

pdf
Enhancing Neural Models with Vulnerability via Adversarial Attack
Rong Zhang | Qifei Zhou | Bo An | Weiping Li | Tong Mo | Bo Wu
Proceedings of the 28th International Conference on Computational Linguistics

Natural Language Sentence Matching (NLSM) serves as the core of many natural language processing tasks. 1) Most previous work develops a single specific neural model for NLSM tasks. 2) There is no previous work considering adversarial attack to improve the performance of NLSM tasks. 3) Adversarial attack is usually used to generate adversarial samples that can fool neural models. In this paper, we first find a phenomenon that different categories of samples have different vulnerabilities. Vulnerability is the difficulty degree in changing the label of a sample. Considering the phenomenon, we propose a general two-stage training framework to enhance neural models with Vulnerability via Adversarial Attack (VAA). We design criteria to measure the vulnerability which is obtained by adversarial attack. VAA framework can be adapted to various neural models by incorporating the vulnerability. In addition, we prove a theorem and four corollaries to explain the factors influencing vulnerability effectiveness. Experimental results show that VAA significantly improves the performance of neural models on NLSM datasets. The results are also consistent with the theorem and corollaries. The code is released on https://github.com/rzhangpku/VAA.