Berrin Yanikoglu


2022

pdf
A Turkish Hate Speech Dataset and Detection System
Fatih Beyhan | Buse Çarık | İnanç Arın | Ayşecan Terzioğlu | Berrin Yanikoglu | Reyyan Yeniterzi
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Social media posts containing hate speech are reproduced and redistributed at an accelerated pace, reaching greater audiences at a higher speed. We present a machine learning system for automatic detection of hate speech in Turkish, along with a hate speech dataset consisting of tweets collected in two separate domains. We first adopted a definition for hate speech that is in line with our goals and amenable to easy annotation; then designed the annotation schema for annotating the collected tweets. The Istanbul Convention dataset consists of tweets posted following the withdrawal of Turkey from the Istanbul Convention. The Refugees dataset was created by collecting tweets about immigrants by filtering based on commonly used keywords related to immigrants. Finally, we have developed a hate speech detection system using the transformer architecture (BERTurk), to be used as a baseline for the collected dataset. The binary classification accuracy is 77% when the system is evaluated using 5-fold cross-validation on the Istanbul Convention dataset and 71% for the Refugee dataset. We also tested a regression model with 0.66 and 0.83 RMSE on a scale of [0-4], for the Istanbul Convention and Refugees datasets.

2021

pdf
Semantic Similarity Based Evaluation for Abstractive News Summarization
Figen Beken Fikri | Kemal Oflazer | Berrin Yanikoglu
Proceedings of the 1st Workshop on Natural Language Generation, Evaluation, and Metrics (GEM 2021)

ROUGE is a widely used evaluation metric in text summarization. However, it is not suitable for the evaluation of abstractive summarization systems as it relies on lexical overlap between the gold standard and the generated summaries. This limitation becomes more apparent for agglutinative languages with very large vocabularies and high type/token ratios. In this paper, we present semantic similarity models for Turkish and apply them as evaluation metrics for an abstractive summarization task. To achieve this, we translated the English STSb dataset into Turkish and presented the first semantic textual similarity dataset for Turkish as well. We showed that our best similarity models have better alignment with average human judgments compared to ROUGE in both Pearson and Spearman correlations.

2013

pdf
SU-Sentilab : A Classification System for Sentiment Analysis in Twitter
Gizem Gezici | Rahim Dehkharghani | Berrin Yanikoglu | Dilek Tapucu | Yucel Saygin
Second Joint Conference on Lexical and Computational Semantics (*SEM), Volume 2: Proceedings of the Seventh International Workshop on Semantic Evaluation (SemEval 2013)