Angelica Chen


2022

pdf
BBQ: A hand-built bias benchmark for question answering
Alicia Parrish | Angelica Chen | Nikita Nangia | Vishakh Padmakumar | Jason Phang | Jana Thompson | Phu Mon Htut | Samuel Bowman
Findings of the Association for Computational Linguistics: ACL 2022

It is well documented that NLP models learn social biases, but little work has been done on how these biases manifest in model outputs for applied tasks like question answering (QA). We introduce the Bias Benchmark for QA (BBQ), a dataset of question-sets constructed by the authors that highlight attested social biases against people belonging to protected classes along nine social dimensions relevant for U.S. English-speaking contexts. Our task evaluate model responses at two levels: (i) given an under-informative context, we test how strongly responses reflect social biases, and (ii) given an adequately informative context, we test whether the model’s biases override a correct answer choice. We find that models often rely on stereotypes when the context is under-informative, meaning the model’s outputs consistently reproduce harmful biases in this setting. Though models are more accurate when the context provides an informative answer, they still rely on stereotypes and average up to 3.4 percentage points higher accuracy when the correct answer aligns with a social bias than when it conflicts, with this difference widening to over 5 points on examples targeting gender for most models tested.

pdf
Single-Turn Debate Does Not Help Humans Answer Hard Reading-Comprehension Questions
Alicia Parrish | Harsh Trivedi | Ethan Perez | Angelica Chen | Nikita Nangia | Jason Phang | Samuel Bowman
Proceedings of the First Workshop on Learning with Natural Language Supervision

Current QA systems can generate reasonable-sounding yet false answers without explanation or evidence for the generated answer, which is especially problematic when humans cannot readily check the model’s answers. This presents a challenge for building trust in machine learning systems. We take inspiration from real-world situations where difficult questions are answered by considering opposing sides (see Irving et al., 2018). For multiple-choice QA examples, we build a dataset of single arguments for both a correct and incorrect answer option in a debate-style set-up as an initial step in training models to produce explanations for two candidate answers. We use long contexts—humans familiar with the context write convincing explanations for pre-selected correct and incorrect answers, and we test if those explanations allow humans who have not read the full context to more accurately determine the correct answer. We do not find that explanations in our set-up improve human accuracy, but a baseline condition shows that providing human-selected text snippets does improve accuracy. We use these findings to suggest ways of improving the debate set up for future data collection efforts.

pdf
Teaching BERT to Wait: Balancing Accuracy and Latency for Streaming Disfluency Detection
Angelica Chen | Vicky Zayats | Daniel Walker | Dirk Padfield
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

In modern interactive speech-based systems, speech is consumed and transcribed incrementally prior to having disfluencies removed. While this post-processing step is crucial for producing clean transcripts and high performance on downstream tasks (e.g. machine translation), most current state-of-the-art NLP models such as the Transformer operate non-incrementally, potentially causing unacceptable delays for the user. In this work we propose a streaming BERT-based sequence tagging model that, combined with a novel training objective, is capable of detecting disfluencies in real-time while balancing accuracy and latency. This is accomplished by training the model to decide whether to immediately output a prediction for the current input or to wait for further context, in essence learning to dynamically size the lookahead window. Our results demonstrate that our model produces comparably accurate predictions and does so sooner than our baselines, with lower flicker. Furthermore, the model attains state-of-the-art latency and stability scores when compared with recent work on incremental disfluency detection.

pdf
QuALITY: Question Answering with Long Input Texts, Yes!
Richard Yuanzhe Pang | Alicia Parrish | Nitish Joshi | Nikita Nangia | Jason Phang | Angelica Chen | Vishakh Padmakumar | Johnny Ma | Jana Thompson | He He | Samuel Bowman
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

To enable building and testing models on long-document comprehension, we introduce QuALITY, a multiple-choice QA dataset with context passages in English that have an average length of about 5,000 tokens, much longer than typical current models can process. Unlike in prior work with passages, our questions are written and validated by contributors who have read the entire passage, rather than relying on summaries or excerpts. In addition, only half of the questions are answerable by annotators working under tight time constraints, indicating that skimming and simple search are not enough to consistently perform well. Our baseline models perform poorly on this task (55.4%) and significantly lag behind human performance (93.5%).

pdf
Adversarially Constructed Evaluation Sets Are More Challenging, but May Not Be Fair
Jason Phang | Angelica Chen | William Huang | Samuel R. Bowman
Proceedings of the First Workshop on Dynamic Adversarial Data Collection

Large language models increasingly saturate existing task benchmarks, in some cases outperforming humans, leaving little headroom with which to measure further progress. Adversarial dataset creation, which builds datasets using examples that a target system outputs incorrect predictions for, has been proposed as a strategy to construct more challenging datasets, avoiding the more serious challenge of building more precise benchmarks by conventional means. In this work, we study the impact of applying three common approaches for adversarial dataset creation: (1) filtering out easy examples (AFLite), (2) perturbing examples (TextFooler), and (3) model-in-the-loop data collection (ANLI and AdversarialQA), across 18 different adversary models. We find that all three methods can produce more challenging datasets, with stronger adversary models lowering the performance of evaluated models more. However, the resulting ranking of the evaluated models can also be unstable and highly sensitive to the choice of adversary model. Moreover, we find that AFLite oversamples examples with low annotator agreement, meaning that model comparisons hinge on the examples that are most contentious for humans. We recommend that researchers tread carefully when using adversarial methods for building evaluation datasets.

2019

pdf
Generating Logical Forms from Graph Representations of Text and Entities
Peter Shaw | Philip Massey | Angelica Chen | Francesco Piccinno | Yasemin Altun
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Structured information about entities is critical for many semantic parsing tasks. We present an approach that uses a Graph Neural Network (GNN) architecture to incorporate information about relevant entities and their relations during parsing. Combined with a decoder copy mechanism, this approach provides a conceptually simple mechanism to generate logical forms with entities. We demonstrate that this approach is competitive with the state-of-the-art across several tasks without pre-training, and outperforms existing approaches when combined with BERT pre-training.