Anchit Gupta


2022

pdf
Domain-matched Pre-training Tasks for Dense Retrieval
Barlas Oguz | Kushal Lakhotia | Anchit Gupta | Patrick Lewis | Vladimir Karpukhin | Aleksandra Piktus | Xilun Chen | Sebastian Riedel | Scott Yih | Sonal Gupta | Yashar Mehdad
Findings of the Association for Computational Linguistics: NAACL 2022

Pre-training on larger datasets with ever increasing model size isnow a proven recipe for increased performance across almost all NLP tasks.A notable exception is information retrieval, where additional pre-traininghas so far failed to produce convincing results. We show that, with theright pre-training setup, this barrier can be overcome. We demonstrate thisby pre-training large bi-encoder models on 1) a recently released set of 65 millionsynthetically generated questions, and 2) 200 million post-comment pairs from a preexisting dataset of Reddit conversations made available by pushshift.io.We evaluate on a set of information retrieval and dialogue retrieval benchmarks, showing substantial improvements over supervised baselines.

pdf
Simple Local Attentions Remain Competitive for Long-Context Tasks
Wenhan Xiong | Barlas Oguz | Anchit Gupta | Xilun Chen | Diana Liskovich | Omer Levy | Scott Yih | Yashar Mehdad
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Many NLP tasks require processing long contexts beyond the length limit of pretrained models. In order to scale these models to longer text sequences, many efficient long-range attention variants have been proposed. Despite the abundance of research along this direction, it is still difficult to gauge the relative effectiveness of these models in practical use cases, e.g., if we apply these models following the pretrain-and-finetune paradigm. In this work, we aim to conduct a thorough analysis of these emerging models with large-scale and controlled experiments. For each attention variant, we pretrain large-size models using the same long-doc corpus and then finetune these models for real-world long-context tasks. Our findings reveal pitfalls of an existing widely-used long-range benchmark and show none of the tested efficient attentions can beat a simple local window attention under standard pretraining paradigms. Further analysis on local attention variants suggests that even the commonly used attention-window overlap is not necessary to achieve good downstream results — using disjoint local attentions, we are able to build a simpler and more efficient long-doc QA model that matches the performance of Longformer with half of its pretraining compute.

2021

pdf
MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing Benchmark
Haoran Li | Abhinav Arora | Shuohui Chen | Anchit Gupta | Sonal Gupta | Yashar Mehdad
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Scaling semantic parsing models for task-oriented dialog systems to new languages is often expensive and time-consuming due to the lack of available datasets. Available datasets suffer from several shortcomings: a) they contain few languages b) they contain small amounts of labeled examples per language c) they are based on the simple intent and slot detection paradigm for non-compositional queries. In this paper, we present a new multilingual dataset, called MTOP, comprising of 100k annotated utterances in 6 languages across 11 domains. We use this dataset and other publicly available datasets to conduct a comprehensive benchmarking study on using various state-of-the-art multilingual pre-trained models for task-oriented semantic parsing. We achieve an average improvement of +6.3 points on Slot F1 for the two existing multilingual datasets, over best results reported in their experiments. Furthermore, we demonstrate strong zero-shot performance using pre-trained models combined with automatic translation and alignment, and a proposed distant supervision method to reduce the noise in slot label projection.

pdf
Muppet: Massive Multi-task Representations with Pre-Finetuning
Armen Aghajanyan | Anchit Gupta | Akshat Shrivastava | Xilun Chen | Luke Zettlemoyer | Sonal Gupta
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We propose pre-finetuning, an additional large-scale learning stage between language model pre-training and fine-tuning. Pre-finetuning is massively multi-task learning (around 50 datasets, over 4.8 million total labeled examples), and is designed to encourage learning of representations that generalize better to many different tasks. We show that pre-finetuning consistently improves performance for pretrained discriminators (e.g. RoBERTa) and generation models (e.g. BART) on a wide range of tasks (sentence prediction, commonsense reasoning, MRC, etc.), while also significantly improving sample efficiency during fine-tuning. We also show that large-scale multi-tasking is crucial; pre-finetuning can hurt performance when few tasks are used up until a critical point (usually above 15) after which performance improves linearly in the number of tasks.

2020

pdf
Sound Natural: Content Rephrasing in Dialog Systems
Arash Einolghozati | Anchit Gupta | Keith Diedrick | Sonal Gupta
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We introduce a new task of rephrasing for a more natural virtual assistant. Currently, virtual assistants work in the paradigm of intent-slot tagging and the slot values are directly passed as-is to the execution engine. However, this setup fails in some scenarios such as messaging when the query given by the user needs to be changed before repeating it or sending it to another user. For example, for queries like ‘ask my wife if she can pick up the kids’ or ‘remind me to take my pills’, we need to rephrase the content to ‘can you pick up the kids’ and ‘take your pills’. In this paper, we study the problem of rephrasing with messaging as a use case and release a dataset of 3000 pairs of original query and rephrased query. We show that BART, a pre-trained transformers-based masked language model, is a strong baseline for the task, and show improvements by adding a copy-pointer and copy loss to it. We analyze different trade-offs of BART-based and LSTM-based seq2seq models, and propose a distilled LSTM-based seq2seq as the best practical model