Alon Jacovi


2021

pdf
Scalable Evaluation and Improvement of Document Set Expansion via Neural Positive-Unlabeled Learning
Alon Jacovi | Gang Niu | Yoav Goldberg | Masashi Sugiyama
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

We consider the situation in which a user has collected a small set of documents on a cohesive topic, and they want to retrieve additional documents on this topic from a large collection. Information Retrieval (IR) solutions treat the document set as a query, and look for similar documents in the collection. We propose to extend the IR approach by treating the problem as an instance of positive-unlabeled (PU) learning—i.e., learning binary classifiers from only positive (the query documents) and unlabeled (the results of the IR engine) data. Utilizing PU learning for text with big neural networks is a largely unexplored field. We discuss various challenges in applying PU learning to the setting, showing that the standard implementations of state-of-the-art PU solutions fail. We propose solutions for each of the challenges and empirically validate them with ablation tests. We demonstrate the effectiveness of the new method using a series of experiments of retrieving PubMed abstracts adhering to fine-grained topics, showing improvements over the common IR solution and other baselines.

pdf
Contrastive Explanations for Model Interpretability
Alon Jacovi | Swabha Swayamdipta | Shauli Ravfogel | Yanai Elazar | Yejin Choi | Yoav Goldberg
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Contrastive explanations clarify why an event occurred in contrast to another. They are inherently intuitive to humans to both produce and comprehend. We propose a method to produce contrastive explanations in the latent space, via a projection of the input representation, such that only the features that differentiate two potential decisions are captured. Our modification allows model behavior to consider only contrastive reasoning, and uncover which aspects of the input are useful for and against particular decisions. Our contrastive explanations can additionally answer for which label, and against which alternative label, is a given input feature useful. We produce contrastive explanations via both high-level abstract concept attribution and low-level input token/span attribution for two NLP classification benchmarks. Our findings demonstrate the ability of label-contrastive explanations to provide fine-grained interpretability of model decisions.

pdf
Amnesic Probing: Behavioral Explanation with Amnesic Counterfactuals
Yanai Elazar | Shauli Ravfogel | Alon Jacovi | Yoav Goldberg
Transactions of the Association for Computational Linguistics, Volume 9

Abstract A growing body of work makes use of probing in order to investigate the working of neural models, often considered black boxes. Recently, an ongoing debate emerged surrounding the limitations of the probing paradigm. In this work, we point out the inability to infer behavioral conclusions from probing results, and offer an alternative method that focuses on how the information is being used, rather than on what information is encoded. Our method, Amnesic Probing, follows the intuition that the utility of a property for a given task can be assessed by measuring the influence of a causal intervention that removes it from the representation. Equipped with this new analysis tool, we can ask questions that were not possible before, for example, is part-of-speech information important for word prediction? We perform a series of analyses on BERT to answer these types of questions. Our findings demonstrate that conventional probing performance is not correlated to task importance, and we call for increased scrutiny of claims that draw behavioral or causal conclusions from probing results.1

pdf
Aligning Faithful Interpretations with their Social Attribution
Alon Jacovi | Yoav Goldberg
Transactions of the Association for Computational Linguistics, Volume 9

Abstract We find that the requirement of model interpretations to be faithful is vague and incomplete. With interpretation by textual highlights as a case study, we present several failure cases. Borrowing concepts from social science, we identify that the problem is a misalignment between the causal chain of decisions (causal attribution) and the attribution of human behavior to the interpretation (social attribution). We reformulate faithfulness as an accurate attribution of causality to the model, and introduce the concept of aligned faithfulness: faithful causal chains that are aligned with their expected social behavior. The two steps of causal attribution and social attribution together complete the process of explaining behavior. With this formalization, we characterize various failures of misaligned faithful highlight interpretations, and propose an alternative causal chain to remedy the issues. Finally, we implement highlight explanations of the proposed causal format using contrastive explanations.

2020

pdf
Towards Faithfully Interpretable NLP Systems: How Should We Define and Evaluate Faithfulness?
Alon Jacovi | Yoav Goldberg
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

With the growing popularity of deep-learning based NLP models, comes a need for interpretable systems. But what is interpretability, and what constitutes a high-quality interpretation? In this opinion piece we reflect on the current state of interpretability evaluation research. We call for more clearly differentiating between different desired criteria an interpretation should satisfy, and focus on the faithfulness criteria. We survey the literature with respect to faithfulness evaluation, and arrange the current approaches around three assumptions, providing an explicit form to how faithfulness is “defined” by the community. We provide concrete guidelines on how evaluation of interpretation methods should and should not be conducted. Finally, we claim that the current binary definition for faithfulness sets a potentially unrealistic bar for being considered faithful. We call for discarding the binary notion of faithfulness in favor of a more graded one, which we believe will be of greater practical utility.

pdf
Exposing Shallow Heuristics of Relation Extraction Models with Challenge Data
Shachar Rosenman | Alon Jacovi | Yoav Goldberg
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The process of collecting and annotating training data may introduce distribution artifacts which may limit the ability of models to learn correct generalization behavior. We identify failure modes of SOTA relation extraction (RE) models trained on TACRED, which we attribute to limitations in the data annotation process. We collect and annotate a challenge-set we call Challenging RE (CRE), based on naturally occurring corpus examples, to benchmark this behavior. Our experiments with four state-of-the-art RE models show that they have indeed adopted shallow heuristics that do not generalize to the challenge-set data. Further, we find that alternative question answering modeling performs significantly better than the SOTA models on the challenge-set, despite worse overall TACRED performance. By adding some of the challenge data as training examples, the performance of the model improves. Finally, we provide concrete suggestion on how to improve RE data collection to alleviate this behavior.

2019


Learning and Understanding Different Categories of Sexism Using Convolutional Neural Network’s Filters
Sima Sharifirad | Alon Jacovi
Proceedings of the 2019 Workshop on Widening NLP

Sexism is very common in social media and makes the boundaries of free speech tighter for female users. Automatically flagging and removing sexist content requires niche identification and description of the categories. In this study, inspired by social science work, we propose three categories of sexism toward women as follows: “Indirect sexism”, “Sexual sexism” and “Physical sexism”. We build classifiers such as Convolutional Neural Network (CNN) to automatically detect different types of sexism and address problems of annotation. Even though inherent non-interpretability of CNN is a challenge for users who detect sexism, as the reason classifying a given speech instance with regard to sexism is difficult to glance from a CNN. However, recent research developed interpretable CNN filters for text data. In a CNN, filters followed by different activation patterns along with global max-pooling can help us tease apart the most important ngrams from the rest. In this paper, we interpret a CNN model trained to classify sexism in order to understand different categories of sexism by detecting semantic categories of ngrams and clustering them. Then, these ngrams in each category are used to improve the performance of the classification task. It is a preliminary work using machine learning and natural language techniques to learn the concept of sexism and distinguishes itself by looking at more precise categories of sexism in social media along with an in-depth investigation of CNN’s filters.

2018

pdf
Understanding Convolutional Neural Networks for Text Classification
Alon Jacovi | Oren Sar Shalom | Yoav Goldberg
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP

We present an analysis into the inner workings of Convolutional Neural Networks (CNNs) for processing text. CNNs used for computer vision can be interpreted by projecting filters into image space, but for discrete sequence inputs CNNs remain a mystery. We aim to understand the method by which the networks process and classify text. We examine common hypotheses to this problem: that filters, accompanied by global max-pooling, serve as ngram detectors. We show that filters may capture several different semantic classes of ngrams by using different activation patterns, and that global max-pooling induces behavior which separates important ngrams from the rest. Finally, we show practical use cases derived from our findings in the form of model interpretability (explaining a trained model by deriving a concrete identity for each filter, bridging the gap between visualization tools in vision tasks and NLP) and prediction interpretability (explaining predictions).