Alon Albalak


2022

pdf
D-REX: Dialogue Relation Extraction with Explanations
Alon Albalak | Varun Embar | Yi-Lin Tuan | Lise Getoor | William Yang Wang
Proceedings of the 4th Workshop on NLP for Conversational AI

Existing research studies on cross-sentence relation extraction in long-form multi-party conversations aim to improve relation extraction without considering the explainability of such methods. This work addresses that gap by focusing on extracting explanations that indicate that a relation exists while using only partially labeled explanations. We propose our model-agnostic framework, D-REX, a policy-guided semi-supervised algorithm that optimizes for explanation quality and relation extraction simultaneously. We frame relation extraction as a re-ranking task and include relation- and entity-specific explanations as an intermediate step of the inference process. We find that human annotators are 4.2 times more likely to prefer D-REX’s explanations over a joint relation extraction and explanation model. Finally, our evaluations show that D-REX is simple yet effective and improves relation extraction performance of strong baseline models by 1.2-4.7%.

2021

pdf
Modeling Disclosive Transparency in NLP Application Descriptions
Michael Saxon | Sharon Levy | Xinyi Wang | Alon Albalak | William Yang Wang
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Broader disclosive transparency—truth and clarity in communication regarding the function of AI systems—is widely considered desirable. Unfortunately, it is a nebulous concept, difficult to both define and quantify. This is problematic, as previous work has demonstrated possible trade-offs and negative consequences to disclosive transparency, such as a confusion effect, where “too much information” clouds a reader’s understanding of what a system description means. Disclosive transparency’s subjective nature has rendered deep study into these problems and their remedies difficult. To improve this state of affairs, We introduce neural language model-based probabilistic metrics to directly model disclosive transparency, and demonstrate that they correlate with user and expert opinions of system transparency, making them a valid objective proxy. Finally, we demonstrate the use of these metrics in a pilot study quantifying the relationships between transparency, confusion, and user perceptions in a corpus of real NLP system descriptions.