Alessandra Russo


2021

pdf
Discrete Reasoning Templates for Natural Language Understanding
Hadeel Al-Negheimish | Pranava Madhyastha | Alessandra Russo
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop

Reasoning about information from multiple parts of a passage to derive an answer is an open challenge for reading-comprehension models. In this paper, we present an approach that reasons about complex questions by decomposing them to simpler subquestions that can take advantage of single-span extraction reading-comprehension models, and derives the final answer according to instructions in a predefined reasoning template. We focus on subtraction based arithmetic questions and evaluate our approach on a subset of the DROP dataset. We show that our approach is competitive with the state of the art while being interpretable and requires little supervision.

pdf
Numerical reasoning in machine reading comprehension tasks: are we there yet?
Hadeel Al-Negheimish | Pranava Madhyastha | Alessandra Russo
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Numerical reasoning based machine reading comprehension is a task that involves reading comprehension along with using arithmetic operations such as addition, subtraction, sorting and counting. The DROP benchmark (Dua et al., 2019) is a recent dataset that has inspired the design of NLP models aimed at solving this task. The current standings of these models in the DROP leaderboard, over standard metrics, suggests that the models have achieved near-human performance. However, does this mean that these models have learned to reason? In this paper, we present a controlled study on some of the top-performing model architectures for the task of numerical reasoning. Our observations suggest that the standard metrics are incapable of measuring progress towards such tasks.