

Ting-Hao (Kenneth) Huang Yun-Nung (Vivian) Chen Lingpeng Kong



HTTP://ACBIMA.ORG

- Introduction
- Related Work
- Morphological Type Scheme
- Morphological Type Classification
  - Drived Word: Rule-Based Approach
  - Compond Word: ML Approach
- Experiments
  - ACBiMA Corpus 1.0
  - Experimental Results
- Conclusion & Future Work

#### Introduction

- Related Work
- Morphological Type Scheme
- Morphological Type Classification
  - o Drived Word: Rule-Based Approach
  - o Compond Word: ML Approach
- Experiments
  - o ACBiMA Corpus 1.0
  - o Experimental Results
- Conclusion & Future Work

#### Introduction

- NLP tasks usually focus on segmented words
- **Morphology** is how words are composed with morphemes
- Usages of Chinese morphological structures
  - Sentiment Analysis (Ku, 2009; Huang, 2009)
  - POS Tagging (Qiu, 2008)
  - Word Segmentation (Gao, 2005)
  - Parsing (Li, 2011; Li, 2012; Zhang, 2013)
- Challenge for Chinese morphology
  - Lack of complete theories
  - Lack of category schema
  - Lack of toolkits



Introduction

#### Related Work

- Morphological Type Scheme
- Morphological Type Classification
  - o Drived Word: Rule-Based Approach
  - o Compond Word: ML Approach
- Experiments
  - o ACBiMA Corpus 1.0
  - o Experimental Results
- Conclusion & Future Work

#### **Related Work**

• Focus on *longer unknown words* 

Tseng, 2002; Tseng, 2005; Lu, 2008; Qiu, 2008

Focus on the *functionality* of morphemic characters
 O Bruno, 2010

Focus on Chinese bi-character words

- Huang, et al., 2010 (LREC)
  - 52% multi-character Chinese tokens are bi-character
  - analyze Chinese morphological types
  - developed a suite of classifiers for type prediction

Issue: covers only a subset of Chinese content words and has limited scalability

- Introduction
- Related Work

#### Morphological Type Scheme

- Morphological Type Classification

   Drived Word: Rule-Based Approach
   Compond Word: ML Approach
- Experiments
  - o ACBiMA Corpus 1.0
  - o Experimental Results
- Conclusion & Future Work

#### Morphological Type Scheme



# Derived Word

| Morphological Characteristics                                                          | Example                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Two <i>duplicate</i> characters.                                                       | 天天/tian-tian/day-day/everyday                                                                                                                                                                                                                                                                                                                                                                                   |
| The first character is a <i>prefix</i> character, e.g. 町/a.                            | 阿姨/a-yi/a-aunt/aunt                                                                                                                                                                                                                                                                                                                                                                                             |
| The second character is a <i>suffix</i> character, e.g. 仔/zi.                          | 牛仔/new-zi/cow-zi/cowboy                                                                                                                                                                                                                                                                                                                                                                                         |
| The first character is a <i>negation</i> character, e.g. 不/bu.                         | 不能/bu-neng/no-capable/unable                                                                                                                                                                                                                                                                                                                                                                                    |
| The first character is an <i>existential construction</i> ,<br>e.g. 有/you/have;exists. | 有人/you-ren/exists-human/people                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                        | <ul> <li>Morphological Characteristics</li> <li>Two <i>duplicate</i> characters.</li> <li>The first character is a <i>prefix</i> character, e.g. 阿/a.</li> <li>The second character is a <i>suffix</i> character, e.g. 仔/zi.</li> <li>The first character is a <i>negation</i> character, e.g. 不/bu.</li> <li>The first character is an <i>existential construction</i>,<br/>e.g. 有/you/have;exists.</li> </ul> |

# Compond Word

| Class  | Syntact                          | tic Role     | Example                                                |  |  |  |  |
|--------|----------------------------------|--------------|--------------------------------------------------------|--|--|--|--|
|        | Char 1                           | Char 2       | Ехатріє                                                |  |  |  |  |
| a-head | adjective he                     |              | 最大/zui-da/most-big/biggest                             |  |  |  |  |
| n-head | modifier                         | nominal head | 平台/ping-tai/flat-platform/(flat)platform               |  |  |  |  |
| v-head |                                  | verbal head  | 主辦/zhu-ban/major-handle/host                           |  |  |  |  |
| nsubj  | nominal subject predicate (verb) |              | 身經/shen-jing/body-experience/experience                |  |  |  |  |
| vobj   | predicate (yerb) object          |              | 開幕/kai-mu/open-screen/opening of event                 |  |  |  |  |
| vprt   | predicate (verb)                 | particle     | 投入/tou-ru/throw-in to/throw in                         |  |  |  |  |
| conj   | play coordinate roles in a word  |              | 男女/nan-nu/male-female/men and women (people)           |  |  |  |  |
| els    | else                             |              | transliterations, abbreviations, idiomatic words, etc. |  |  |  |  |

- Introduction
- Related Work
- Morphological Type Scheme
- Morphological Type Classification
  - Drived Word: Rule-Based Approach
  - Compond Word: ML Approach
- Experiments
  - o ACBiMA Corpus 1.0
  - o Experimental Results
- Conclusion & Future Work

### Morphological Type Classification

 Assumption: Chinese morphological structures are independent from word-level contexts (Tseng, 2002; Li, 2011)

• Derived words

- Rule-based approach
- Compound words
  - ML-based approach

#### Derived Word: Rule-Based

#### Idea

- a morphologically derived word can be recognized based on its formation
- Approach
  - pattern matching rules
- Evaluation
  - Data: Chinese Treebank 7.0
  - Result:
    - 2.9% of bi-char content words are annotated as derived words
    - Precision = 0.97

Rule-based methods are able to effectively recognizing derived words.

#### :: ACBIMA.ORG ::

## Compond Word: ML-Based

#### Idea

- The characteristics of individual characters can help decide the type of compond words
- ML classification models
  - Naïve Bayes
  - Random Forest
  - o SVM

### **Classification Feature**

- Dict: Revised Mandarin Chinese Dictionary (MoE, 1994)
- CTB: Chinese Treebank 5.1 (Xue et al., 2005)

| Category        |                    | Feature                   | Description                                                  |  |  |  |  |
|-----------------|--------------------|---------------------------|--------------------------------------------------------------|--|--|--|--|
|                 |                    | Tone                      | All possible tones (0-4) of $C_i$                            |  |  |  |  |
|                 | uni-char           | Pronunciation             | All possible pronunciations, consonants, and vowels of $C_i$ |  |  |  |  |
| $C_i$           | word               | TF in CTB                 | The POS distribution of $C_i$ in CTB                         |  |  |  |  |
| oth             |                    | Majority POS in CTB       | The most frequent POS of $C_i$ in CTB                        |  |  |  |  |
| r be            |                    | Character POS             | Two POS tags when parsing the 2-token sentence $C_1C_2$      |  |  |  |  |
| (fo             | uni-char           | Dist. of Senses in Dict   | POS distribution of the senses of $C_i$ in dictionary        |  |  |  |  |
| ıre             | morpheme           | Majority POS in Dict      | POS of $C_i$ with the most senses in dictionary              |  |  |  |  |
| eatu            | alphabet<br>symbol | Root                      | The radical (also referred to as "character root") of $C_i$  |  |  |  |  |
| r F(            |                    | CTB Prefix/Suffix Dist    | The occurrence distribution of the n-char words with $C_i$   |  |  |  |  |
| cte             |                    | CTDTTCIA/Sullix Dist.     | as the prefix/suffix corresponding to each POS in CTB.       |  |  |  |  |
| ara             |                    | Dict Prefix/Suffix Dist   | The occurrence distribution of the n-char dictionary         |  |  |  |  |
| Ch              |                    | Diet I Ielix/Sullix Dist. | entry words with $C_i$ as the prefix/suffix                  |  |  |  |  |
|                 |                    | Example Word              | Same as above, but calculate                                 |  |  |  |  |
|                 |                    | Prefix/Suffix Dist.       | the distribution in dictionary example words.                |  |  |  |  |
| W               | ord Feature        | Typed dependency          | Typed dependency relation between $C_1$ and $C_2$            |  |  |  |  |
| (for $C_1C_2$ ) |                    | Stanford Word POS         | Single POS tag of a single token (word)                      |  |  |  |  |

#### :: ACBIMA.ORG ::

- Introduction
- Related Work
- Morphological Type Scheme
- Morphological Type Classification
   Drived Word: Rule-Based Approach
  - o Compond Word: ML Approach

#### Experiments

- ACBiMA Corpus 1.0
- Experimental Results
- Conclusion & Future Work

#### ACBIMA Corpus 1.0

- Initial Set
  - o 3,052 words
  - Extracted from CTB5
  - Annotated with difficulty level
- Whole Set
  - 11,366 words
  - Initial Set +
    - 3k words from CTB 5.1 +

6.5k words from (Huang, 2010)

Table 4: Morphological category distribution

| Cataoam  | Initial Set | Whole Set    |  |  |  |
|----------|-------------|--------------|--|--|--|
| Calegory | 3,052 words | 11,366 words |  |  |  |
| nsubj    | 1.2%        | 1.6%         |  |  |  |
| v-head   | 7.7%        | 8.7%         |  |  |  |
| a-head   | 1.1%        | 1.8%         |  |  |  |
| n-head   | 36.7%       | 34.0%        |  |  |  |
| vprt     | 9.4%        | 9.3%         |  |  |  |
| vobj     | 14.3%       | 14.6%        |  |  |  |
| conj     | 25.5%       | 26.9%        |  |  |  |
| els      | 4.1%        | 3.3%         |  |  |  |

#### **Baseline Models**

- 1) Majority
- 2) Stanford Dependency Map
- 3) Tabular Models
  - Step 1: assign the POS tags to each known character based on different heuristics
  - Step 2: assign the most frequent morphological type obtained from training data to each POS combination, e.g., "(VV, NN) = vobj"

#### **Experimental Result**

- Setting: 10-fold cross-validation
- Metrics: Macro F-measure (MF), Accuracy (ACC)

| Approach          |          | nsubj | v-<br>head | a-<br>head | n-<br>head | vprt | vobj | conj | els  | MF   | ACC  |
|-------------------|----------|-------|------------|------------|------------|------|------|------|------|------|------|
| Majority          |          | 0     | 0          | 0          | .507       | 0    | 0    | 0    | 0    | .172 | .340 |
| Stanford Dep. Map |          | 0     | 0          | 0          | .525       | .351 | .438 | .213 | .010 | .332 | .388 |
| Tabular           | Stanford | 0     | .296       | 0          | .524       | .389 | .434 | .162 | .064 | .349 | .395 |
|                   | СТВ      | .021  | .337       | .009       | .645       | .397 | .529 | .421 | .095 | .479 | .508 |
|                   | Dict     | 0     | .292       | .060       | .670       | .253 | .572 | .484 | .035 | .495 | .526 |

Tablular approaches perform better among all baselines.

#### **Experimental Result**

- Setting: 10-fold cross-validation
- Metrics: Macro F-measure (MF), Accuracy (ACC)

| Approach          |          | nsubj | v-<br>head | a-<br>head | n-<br>head | vprt | vobj | conj | els  | MF   | ACC  |
|-------------------|----------|-------|------------|------------|------------|------|------|------|------|------|------|
| Majority          |          | 0     | 0          | 0          | .507       | 0    | 0    | 0    | 0    | .172 | .340 |
| Stanford Dep. Map |          | 0     | 0          | 0          | .525       | .351 | .438 | .213 | .010 | .332 | .388 |
| Tabular           | Stanford | 0     | .296       | 0          | .524       | .389 | .434 | .162 | .064 | .349 | .395 |
|                   | СТВ      | .021  | .337       | .009       | .645       | .397 | .529 | .421 | .095 | .479 | .508 |
|                   | Dict     | 0     | .292       | .060       | .670       | .253 | .572 | .484 | .035 | .495 | .526 |
| Naïve Base        |          | .273  | .406       | .195       | .523       | .679 | .566 | .547 | .188 | .519 | .518 |
| Random Forest     |          | .250  | .421       | .063       | .760       | .803 | .643 | .656 | .076 | .647 | .674 |
| SVM               |          | .413  | .541       | .288       | .748       | .791 | .657 | .636 | .271 | .662 | .665 |

ML-based methods outperform all baselines, where SVM & RF perform best.

#### **Experimental Result**

- Setting: 10-fold cross-validation
- Metrics: Macro F-measure (MF), Accuracy (ACC)

| Approach          |          | nsubj | v-<br>head | a-<br>head | n-<br>head | vprt | vobj | conj | els  | MF   | ACC  |
|-------------------|----------|-------|------------|------------|------------|------|------|------|------|------|------|
| Majority          |          | 0     | 0          | 0          | .507       | 0    | 0    | 0    | 0    | .172 | .340 |
| Stanford Dep. Map |          | 0     | 0          | 0          | .525       | .351 | .438 | .213 | .010 | .332 | .388 |
| Tabular           | Stanford | 0     | .296       | 0          | .524       | .389 | .434 | .162 | .064 | .349 | .395 |
|                   | СТВ      | .021  | .337       | .009       | .645       | .397 | .529 | .421 | .095 | .479 | .508 |
|                   | Dict     | 0     | .292       | .060       | .670       | .253 | .572 | .484 | .035 | .495 | .526 |
| Naïve Base        |          | .273  | .406       | .195       | .523       | .679 | .566 | .547 | .188 | .519 | .518 |
| Random Forest     |          | .250  | .421       | .063       | .760       | .803 | .643 | .656 | .076 | .647 | .674 |
| SVM               |          | .413  | .541       | .288       | .748       | .791 | .657 | .636 | .271 | .662 | .665 |
| Avg Difficulty    |          | 1.74  | 1.55       | 1.64       | 1.36       | 1.38 | 1.38 | 1.47 | 1.95 | -    | -    |

- Introduction
- Related Work
- Morphological Type Scheme
- Morphological Type Classification
   Orived Word: Rule-Based Approach
  - o Compond Word: ML Approach
- Experiments
  - o ACBiMA Corpus 1.0
  - o Experimental Results
- Conclusion & Future Work

# **Conclusion & Future Work**

#### Contribution

- Linguistic
  - Propose a morphological type scheme
  - Develop a corpus containing about 11K words
- Technical
  - Develop an effective morphological classifier
- Practical
  - Data and tool available
  - Additional features for any Chinese task
- Future
  - Improve other NLP tasks by using ACBiMA



#### Thanks for your attentions!!

• HTTP://ACBIMA.ORG