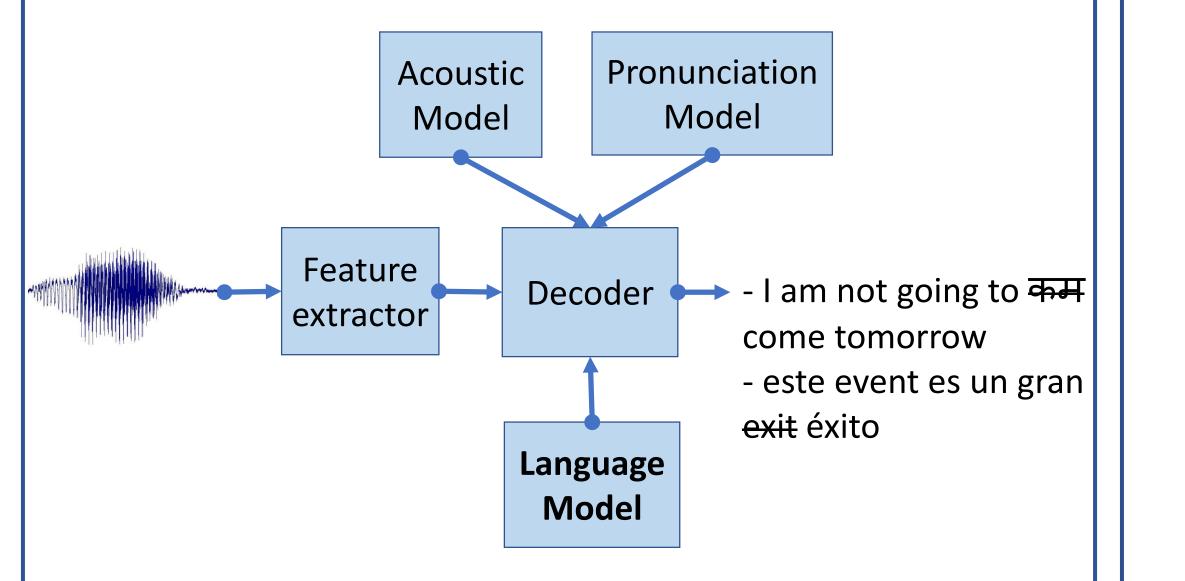
Language Modeling for Code-Mixing: The Role of Linguistic Theory based Synthetic Data

Adithya Pratapa, Gayatri Bhat, Monojit Choudhury, Sunayana Sitaram, Sandipan Dandapat, Kalika Bali

1. Introduction

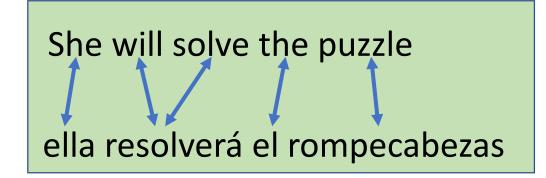
- Code-Mixing (CM) refers to juxtaposition of linguistic units from two or more languages in a single conversation/utterance
- Language model (LM) has applications in ASR, Machine Translation

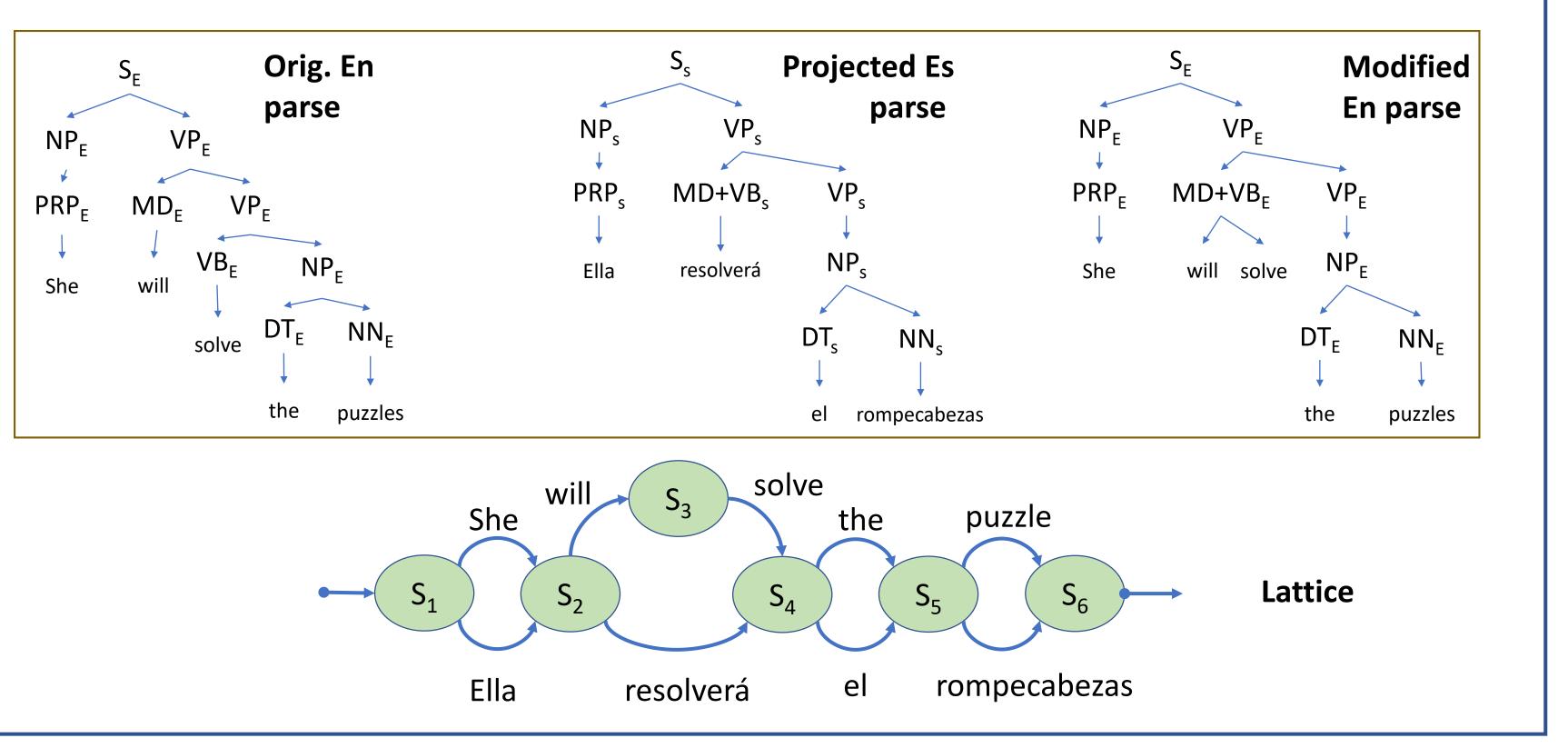


2. Linguistic Models of Code-Mixing

- Equivalence Constraint Theory: (Poplack, 1980; Sankoff, 1998)
 - Any monolingual fragment in CM sentence must occur in one of the monolingual sentences
 - CM sentence shouldn't deviate from both monolingual grammars
 - The two grammars must be equivalent at switch points

Parallel sentences with alignments



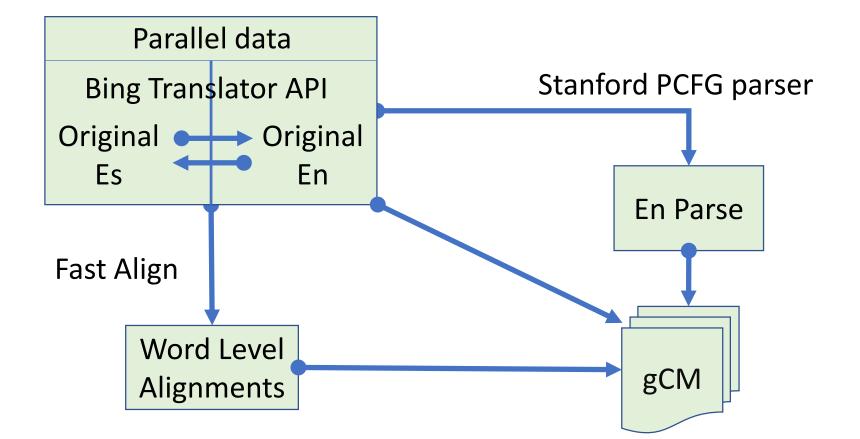


Challenges in modeling CM language,

- CM is rare in formal text
- Even in the available CM data, switch points are few (~10%)

Can we leverage the readily available monolingual data?

3. Generating Synthetic Data

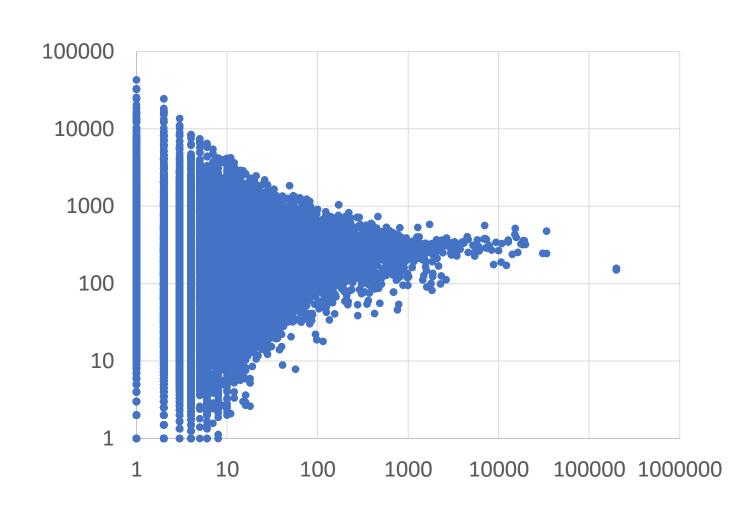


• Used Pseudo Fuzzy-match score to threshold the quality of translations

4. Sampling gCM data

- A pair of monolingual sentences can give rise \bullet to a large (exponential) number of CM sentences, but only a few are observed in real data
- Even the statistical properties of this gCM data are different from real CM data

Z	500			
Z	000			
(7)	500		_	_
(1)	8000		\vdash	-
2	.500	_	Н	_
2	.000		\vdash	_
1	.500			

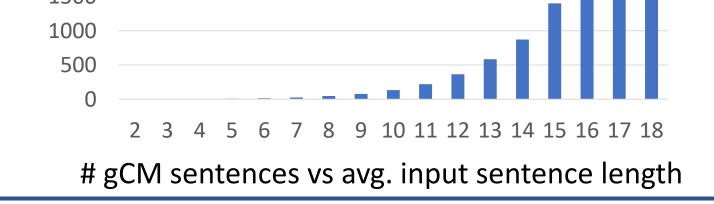


fractional increase in word freq. in gCM vs Original freq. of unigrams.

• Hence the need for sampling, based on,

- En-parse is projected onto the Es sentence using word-level alignments
- rCM train, validation and test-17 (Rijhwani et al. 2017), test-14 (Solorio et al. 2014)

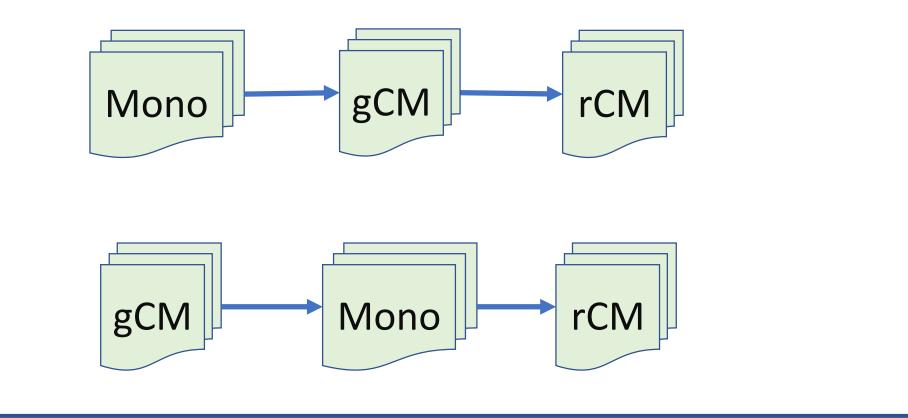
Dataset	# Tweets	# Words	СМІ	SPF
English	100K	850K	0	0
Spanish	100K	860K	0	0
Train	100K	1.4M	0.31	0.105
Validation	100K	1.4M	0.31	0.106
Test-17	83K	1.1M	0.31	0.104
Test-14	13K	138K	0.12	0.06
gCM	31M	463M	0.75	0.35



- Random (*x-gCM*)
- Code mixing index (CMI) (\uparrow -gCM & \downarrow -gCM)
- Switch point fraction (SPF) (*p-gCM*)

5. Training Curricula

- LM can be trained sequentially on different orderings of Mono, gCM and rCM resulting in various training curricula
- Real CM (rCM) data at the end of training is found to be most effective (*Baheti et al.* 2017)



6. Experiments and Results

Expt. ID	Training Curricula			Overall PPL		Avg. SP PPL		
				Test-17	Test-14	Test-17	Test-14	
1	rCM			2018	1822	5670	8864	
2	Mono			1607	892	23790	26901	- Baselines
3	Mono	rCM		1041	861	4824	7913	
4(a)	Mono	gCM						
4(a)-χ	Mono	χ-gCM		1771	1119	5869	6065	
4(a)-个	Mono	个-gCM		1872	1208	9167	8803	
4(a)-p	Mono	ρ-gCM		1618	1116	6618	7293	
4(b)	gCM	Mono						
4(b)-χ	χ-gCM	Mono		1680	903	21028	20300	
4(b)-↓	↓-gCM	Mono		1917	973	28722	25006	
4(b)-p	ρ-gCM	Mono		1641	871	26710	22557	
5(a)	Mono	gCM	rCM					
5(a)-χ	Mono	χ-gCM	rCM	1038	836	4386	5958	
5(a)-个	Mono	个-gCM	rCM	1058	961	5078	6861	
5(a)-p	Mono	ρ-gCM	rCM	1011	830	4829	6807	
5(b)	gCM	Mono	rCM					
5(b)-χ	χ-gCM	Mono	rCM	1019	790	4987	7018	
5(b)-↓	↓-gCM	Mono	rCM	1025	800	5489	7476	
5(b)-p	ρ-gCM	Mono	rCM	986	772	4912	6547	Best Model

- Effect of rCM size: \bullet
 - As expected, PPL drops with increasing amount of rCM data
 - gCM data still helps even though diminishingly
 - In general, the baseline (Model 3) needs *twice as much amount* <u>of rCM data</u> to perform as good as our Model 5(b)-p
- Even though gCM helps, rCM data is indispensable
- SPF based sampling performs the best
- PPL at SPs is much higher than overall PPL, showing the inherent
- complexity of modeling CM language
- Modeling shorter run lengths is found to be challenging

# rCM Expt.	0.5K	1K	2.5 K	5K	10K	50K
3	1238	1186	1120	1041	991	812
5(b)-ρ	1181	1141	1068	986	951	808

References:

Ashutosh Baheti, Sunayana Sitaram, Monojit Choudhury, and Kalika Bali. 2017. Curriculum design for code-switching: Experiments with language identification and language modeling with deep neural networks. In Proc. of ICON-2017, Kolkata, India, pages 65–74.

Shana Poplack. 1980. Sometimes III start a sentence in Spanish y termino en espaol. Linguistics, 18:581–618. Shruti Rijhwani, R Sequiera, M Choudhury, K Bali, and C S Maddila. 2017. Estimating code-switching on Twitter with a novel generalized word-level language identification technique. In ACL.

David Sankoff. 1998. A formal production-based explanation of the facts of code-switching. Bilingualism: language and cognition, 1(01):39–50.

Thamar Solorio et al. 2014. Overview for the first shared task on language identification in codeswitched data. In 1st Workshop on Computational Approaches to Code Switching, EMNLP, pages 62–72.

Contact: monojitc@microsoft.com