
Language Modeling for Code-Mixing: 
The Role of Linguistic Theory based Synthetic Data

Challenges in modeling CM language,
• CM is rare in formal text
• Even in the available CM data, switch points are few (~10%)

Can we leverage the readily available monolingual data?

• Code-Mixing (CM) refers to juxtaposition of linguistic units 
from two or more languages in a single 
conversation/utterance

• Language model (LM) has applications in ASR, Machine 
Translation

1. Introduction

3. Generating Synthetic Data 

6. Experiments and Results 

4. Sampling gCM data 
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• A pair of monolingual sentences can give rise 
to a large (exponential) number of CM 
sentences, but only a few are observed in real 
data

• Even the statistical properties of this gCM data 
are different from real CM data

Expt. ID Training Curricula Overall PPL Avg. SP PPL

Test-17 Test-14 Test-17 Test-14

1 rCM 2018 1822 5670 8864

2 Mono 1607 892 23790 26901

3 Mono rCM 1041 861 4824 7913

4(a) Mono gCM

4(a)-χ Mono χ-gCM 1771 1119 5869 6065

4(a)-↑ Mono ↑-gCM 1872 1208 9167 8803

4(a)-ρ Mono ρ-gCM 1618 1116 6618 7293

4(b) gCM Mono

4(b)-χ χ-gCM Mono 1680 903 21028 20300

4(b)-↓ ↓-gCM Mono 1917 973 28722 25006

4(b)-ρ ρ-gCM Mono 1641 871 26710 22557

5(a) Mono gCM rCM

5(a)-χ Mono χ-gCM rCM 1038 836 4386 5958

5(a)-↑ Mono ↑-gCM rCM 1058 961 5078 6861

5(a)-ρ Mono ρ-gCM rCM 1011 830 4829 6807

5(b) gCM Mono rCM

5(b)-χ χ-gCM Mono rCM 1019 790 4987 7018

5(b)-↓ ↓-gCM Mono rCM 1025 800 5489 7476

5(b)-ρ ρ-gCM Mono rCM 986 772 4912 6547

5. Training Curricula
Mono rCMgCM• LM can be trained sequentially on 

different orderings of Mono, gCM
and rCM resulting in various training 
curricula

• Real CM (rCM) data at the end of 
training is found to be most effective 
(Baheti et al. 2017)

# rCM
Expt. 

0.5K 1K 2.5K 5K 10K 50K

3 1238 1186 1120 1041 991 812

5(b)-ρ 1181 1141 1068 986 951 808

Stanford PCFG parser

• Used Pseudo Fuzzy-match score to threshold the quality of 
translations

• En-parse is projected onto the Es sentence using word-level 
alignments

• rCM train, validation and test-17 (Rijhwani et al. 2017), test-14 
(Solorio et al. 2014)

Dataset # Tweets # Words CMI SPF

English 100K 850K 0 0

Spanish 100K 860K 0 0

Train 100K 1.4M 0.31 0.105

Validation 100K 1.4M 0.31 0.106

Test-17 83K 1.1M 0.31 0.104

Test-14 13K 138K 0.12 0.06

gCM 31M 463M 0.75 0.35

• Effect of rCM size:
• As expected, PPL drops with increasing amount of rCM data
• gCM data still helps even though diminishingly
• In general, the baseline (Model 3) needs twice as much amount 

of rCM data to perform as good as our Model 5(b)-ρ
• Even though gCM helps, rCM data is indispensable
• SPF based sampling performs the best
• PPL at SPs is much higher than overall PPL, showing the inherent 

complexity of modeling CM language
• Modeling shorter run lengths is found to be challenging

2. Linguistic Models of Code-Mixing

• Equivalence Constraint Theory: (Poplack, 1980; Sankoff, 1998)
• Any monolingual fragment in CM sentence must occur in 

one of the monolingual sentences
• CM sentence shouldn’t deviate from both monolingual 

grammars
• The two grammars must be equivalent at switch points
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• Hence the need for sampling, based on,
• Random (χ-gCM)
• Code mixing index (CMI) (↑-gCM & ↓-gCM ) 
• Switch point fraction (SPF) (ρ-gCM)
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