Working Memory Networks:

Augmenting Memory Networks with a Relational Reasoning Module

Juan Pavez, Héctor Allende, Héctor Allende-Cid

UNIVERSIDAD TECNICA
FEDERICO SANTA MARIA

Reasoning for Question Answering

Reasoning is crucial for building systems that can dialogue with humans in natural language.

Reasoning: The process of forming conclusions, judgments, or inferences from facts or premises.

Examples:

- Inferential Reasoning: Premise 1, Premise 2 -> Conclusion
- John is in the kitchen, John has the ball -> The ball is in the kitchen
- Relational Reasoning: Reason about relations between entities and their properties (Santoro et al.)
- Causal Reasoning, Logical Reasoning, ...

bAbl Dataset (Weston et al., 2015)

- One of the earliest datasets to measure the reasoning abilities of ML systems.
- Synthetic. Not NLP.
- Easy to evaluate different reasoning capabilities.
- Noiseless tasks: Separates reasoning analysis from natural language understanding.
- A thorough analysis can be found in (Lee et al., 2016)

Category 2: Two Supporting Facts.
01: Mary went to the kitchen.
02: Sandra journeyed to the office
03: Mary got the football there.
04: Mary travelled to the garden.
05: Where is the football? garden 34
Category 4: Path Finding.
01: The bedroom is south of the hallway..
02: The bathroom is east of the office.
03: The kitchen is west of the garden.
04: The garden is south of the office.
05: The office is south of the bedroom.
05: How do you go from the garden to the
bedroom?? n,n 45

bAbl Dataset (Weston et al., 2015)

- One of the earliest datasets to measure the reasoning abilities of ML systems.
- Synthetic. Not NLP.
- Easy to evaluate different reasoning capabilities.
- Noiseless tasks: Separates reasoning analysis from natural language understanding.
- A thorough analysis can be found in (Lee et al., 2016)

Category 2: Two Supporting Facts.
01: Mary went to the kitchen.
02: Sandra journeyed to the office
03: Mary got the football there.
04: Mary travelled to the garden.
05: Where is the football? garden 34
Category 4: Path Finding.
01: The bedroom is south of the hallway..
02: The bathroom is east of the office.
03: The kitchen is west of the garden.
04: The garden is south of the office.
05: The office is south of the bedroom.
05: How do you go from the garden to the
bedroom?? n, 45
05: Where is the football? garden 34

Has(Mary, Football), Is(Mary, Garden)
$\rightarrow I s($ Football, Garden)

bAbl Dataset (Weston et al., 2015)

- One of the earliest datasets to measure the reasoning abilities of ML systems.
- Synthetic. Not NLP.
- Easy to evaluate different reasoning capabilities.
- Noiseless tasks: Separates reasoning analysis from natural language understanding.
- A thorough analysis can be found in (Lee et al., 2016)

Category 2: Two Supporting Facts.
01: Mary went to the kitchen.
02: Sandra journeyed to the office
03: Mary got the football there.
04: Mary travelled to the garden.
05: Where is the football? garden 34

Category 4: Path Finding.	
01: The bedroom is south of the hallway..	
02: The bathroom is east of the office.	Sarden, Office),
03: The kitchen is west of the garden.	$\& N=S^{-1}$
04: The garden is south of the office.	$\rightarrow N, N$
05: The office is south of the bedroom.	
05: How do you go from the garden to the	
bedroom?? n,n 45	

Memory Augmented Neural Networks

Memory Networks (Weston et al. 2014, Sukhbaatar et al. 2015)
Process a set of inputs and store them in memory. Then, at each hop, an important part of the memory is retrieved and used to retrieve more memories. Finally, the last retrieved memory is used to compute the answer.

Memory Augmented Neural Networks

Memory Networks (Weston et al. 2014, Sukhbaatar et al. 2015)
Process a set of inputs and store them in memory. Then, at each hop, an important part of the memory is retrieved and used to retrieve more memories. Finally, the last retrieved memory is used to compute the answer.

$$
\begin{aligned}
& \alpha_{i}=\operatorname{Softmax}\left(u^{T} m_{i}\right) \\
& o_{1}=\sum_{i} \alpha_{i} m_{i}
\end{aligned}
$$

01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there.
04: Mary travelled to the garden
$\mathrm{q}:$ Where is the football.

Memory Augmented Neural Networks

Memory Networks (Weston et al. 2014, Sukhbaatar et al. 2015)
Process a set of inputs and store them in memor memory is retrieved and used to retrieve more m to compute the answer.

$$
\begin{aligned}
& \alpha_{i}=\operatorname{Softmax}\left(o_{1}^{T} m_{i}\right) \\
& o_{2}=\sum_{i} \alpha_{i} m_{i}
\end{aligned}
$$

01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there.
04: Mary travelled to the garden

01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there.
04: Mary travelled to the garden

Hop 2

important part of the etrieved memory is used

Memory Augmented Neural Networks

Memory Networks (Weston et al. 2014, Sukhbaatar et al. 2015)
Process a set of inputs and store them in memory. Then, at each hop, an important part of the memory is retrieved and used to retrieve more memories. Finally, the last retrieved memory is used to compute the answer.

Memory Augmented Neural Networks

Memory Networks (Weston et al. 2014, Sukhbaatar et al. $2 C$ Process a set of inputs and store them in memory. Then, at each hop, an imp $L(y, \hat{y})=-\sum y_{i} \ln \left(\hat{y}_{i}\right)$ memory is retrieved and used to retrieve more memories. Finally, the last retrie i

Memory Augmented Neural Networks

Memory Networks (Weston et al. 2014, Sukhbaatar et al. 2015)

Some weaknesses:

- The attention mechanism is simple
- The attention mechanism relies on embeddings.
- It may be nice to separate embedding learning from attention learning (modularization, reusability).
- The answer computation is too simple, it only uses one retrieved memory. Hard to see how can produce more complex reasoning based on memories.

Relational Neural Networks

Relation Networks (Santoro et al. 2017)
Neural Network with an inductive bias to learn pairwise relations of the input objects and their properties. A type of Graph Neural Networks.
memories

01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there.
04: Mary travelled to the garden

$q:$ Where is the football.

Relational Neural Networks

Relation Networks (Santoro et al. 2017)
Neural Network with an inductive bias to learn pairwise relations of the input objects and their properties. A type of Graph Neural Networks.
memories memories pairs
with question
01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there.
04: Mary travelled to the garden
$\mathrm{q}:$ Where is the football.

Relational Neural Networks

Relation Networks (Santoro et al. 2017)
Neural Network with an inductive bias to learn pairwise relations of the input objects and their properties. A type of Graph Neural Networks.
memories memories pairs

01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there.
04: Mary travelled to the garden
q :Where is the football.

Relational Neural Networks

Relation Networks (Santoro et al. 2017)
Neural Network with an inductive bias to learn pairwise relations of the input objects and their properties. A type of Graph Neural Networks.
memories memories pairs

01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there. 04: Mary travelled to the garden
$q:$ Where is the football.

Relational Neural Networks

Relation Networks (Santoro et al. 2017)
Neural Network with an inductive bias to learn pairwise relations of the input ok properties. A type of Graph Neural Networks.

$$
L(y, \hat{y})=-\sum_{i} y_{i} \ln \left(\hat{y}_{i}\right)
$$

memories

01: Daniel went to the bathroom.
02: Sandra journeyed to the office.
03: Mary got the football there. 04: Mary travelled to the garden
$\mathrm{q}:$ Where is the football.

Relational Neural Networks

Relation Networks (Santoro et al. 2017)

Some weaknesses:

- The model needs to process N^{2} pairs where N is the number of memories.
- 500 memories would require 250 k backward and forward computations!
- Can not filter out unuseful objects that can produce spurious relations.

Working Memory Networks

Working Memory Network (Pavez et al., 2018)
A Memory Network model with a new working memory buffer and relational reasoning module. Produces state-of-the-art results in reasoning tasks. Inspired by the Multi-component model of working memory.

Working Memory Networks

Working Memory Network (Pavez et al., 2018)
A Memory Network model with a new working memory buffer and relational reasoning module. Produces state-of-the-art results in reasoning tasks. Inspired by the Multi-component model of working memory.

$$
\begin{aligned}
& \text { Multi-head attention (Vaswani et al. 2017) } \\
& m_{i}^{l}=W_{m}^{l} m_{i} \\
& \alpha_{i}^{l}=\operatorname{Softmax}\left(\left(u^{T} m_{i}^{l} / \sqrt{d}\right)\right) \\
& h_{l}=\sum_{j} \alpha_{j}^{l} m_{j}^{l} \\
& o_{1}=\left[h_{1} ; h_{2} ; \ldots\right] W_{o}
\end{aligned}
$$

01: Daniel went to the bathroom. 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

Working Memory Networks

Working Memory Netwo

Multi-head attention (Vaswani et al. 2017)

A Memory Network model with a state-of-the-art results in reasonir

Short-term Memory Module

01: Daniel went to the bathroom. 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

01: Daniel went to the bathroom. 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

y relational reasoning module. Produces mmponent model of working memory.

Reasoning Module

01: Daniel went to the bathroom. 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

Attention Module

Reasoning Module

01: Daniel went to the bathroom. 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

01: Daniel went to the bathroom. 02: Sandra journeyed to the office.
03: Mary got the football there. 04: Mary travelled to the garden
$\mathrm{q}:$ Where is the football.

Hop 1

Short-term Memory Module

01: Daniel went to the bathroom 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

Attention Module

Reasoning Module

01: Daniel went to the bathroom. 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

01: Daniel went to the bathroom 02: Sandra journeyed to the office.
03: Mary got the football there. 04: Mary travelled to the garden

Working memory buffer

$o_{4, H} f_{\phi}$
$O_{1,2}$

$$
a=f_{\phi}\left(\sum_{i, j} g_{\theta}\left(\left[o_{i} ; o_{j} ; u\right]\right)\right.
$$

Short-term Memory Module

01: Daniel went to the bathroom 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

Attention Module

Reasoning Module

$$
L(y, \hat{y})=-\sum_{i} y_{i} \ln \left(\hat{y}_{i}\right)
$$

memories pairs with question

01: Daniel went to the bathroom. 02: Sandra journeyed to the office. 03: Mary got the football there. 04: Mary travelled to the garden

01: Daniel went to the bathroom. 02: Sandra journeyed to the office.
03: Mary got the football there. 04: Mary travelled to the garden

Results - Jointly trained bAbl-10k.

- Results on jointly trained bAbl-10k: Train a single model on all tasks simultaneously.
- Note that EntNet (Henaff et al.) solves all tasks in the per-task version: A single model for each task.

Results - Jointly trained bAbl-10k.

- Results on jointly trained bAbl-10k: Train a single model on all tasks simultaneously.
- Note that EntNet (Henaff et al.) solves all tasks in the per-task version: A single model for each task.

Results - Jointly trained bAbl-10k.

- Results on jointly trained bAbl-10k: Train a single model on all tasks simultaneously.
- Note that EntNet (Henaff et al.) solves all tasks in the per-task version: A single model for each task.

Results - Jointly trained bAbl-10k.

- Results on jointly trained bAbl-10k: Train a single model on all tasks simultaneously.
- Note that EntNet (Henaff et al.) solves all tasks in the per-task version: A single model for each task.

Results - Jointly trained bAbl-10k.

- Results on jointly trained bAbl-10k: Train a single model on all tasks simultaneously.
- Note that EntNet (Henaff et al.) solves all tasks in the per-task version: A single model for each task.

| Ablations | | | | multiple relations |
| :---: | :---: | :---: | :---: | :---: | :---: |

| Ablations | | | | multiple relations |
| :---: | :---: | :---: | :---: | :---: | :---: |

complex attention patterns

Ablations

Time comparison

- Time comparisons for a forward and backward pass for a single batch of size 32.
- For 30 memories there is a speedup of almost 20x.

Conclusions

- We presented the Working Memory Neural Network, a Memory Network model augmented with a new working memory buffer and relational reasoning module.
- It retains the relational reasoning capabilities of the relation network while reducing it computation times considerably.
- We hope that this contribution may help applying the relation network in larger problems.

Conclusions

- It is a very general framework. We argue that it should include:

Embedding + Short-term
storage

Conclusions

- It is a very general framework. We argue that it should include:

Embedding + Short-term
Attentional controller + Working memory buffer

Conclusions

- It is a very general framework. We argue that it should include:
Embedding + Short-term
storage Attentional controller +8 Reasoning module

Conclusions

- It is a very general framework. We argue that it should include:

Conclusions

- It is a very general framework. We argue that it should include:

Conclusions

- It is a very general framework. We argue that it should include:

Conclusions

- It is a very general framework. We argue that it should include:

Thanks!

juan.pavezs@alumnos.usm.cl
Code: https://github.com/jgpavez/Working-Memory-Networks

