

Motivation

Continuous word representations composed from subword representations have shown to be effective for learning the morphological regularities of words. But, some questions remain:

- Type of subword units: characters vs. morphemes?
- How to compose them: addition, bi-LSTM, or CNN?
- Do character-level models capture morphology in terms of predictive utility?
- How do they interact with languages of different morphological typologies?

Task: Language Modeling

Variable: Subword Units

Unit	Output of $\sigma(wants)$			
Morfessor	want, s			
BPE	w, ants			
char-trigram	<pre>^wa, wan, ant, nts, ts\$</pre>			
character	w, a, n, t, s			
analysis	want, $+VB$, $+3rd$, $+SG$, $+PRS$			

Variable: Composition Function

vector addition, bi-LSTM, CNN.

From Characters to Words to in Between: Do We Capture Morphology?

Clara Vania and Adam Lopez {c.vania@ed.ac.uk, alopez@inf.ed.ac.uk}

Institute for Language, Cognition, and Computation, School of Informatics, University of Edinburgh

Variable: Language Typology

Concatenative

Agglutinative (Turkish) oku-r-sa-m read-AOR.COND.1SG 'If I read ...'

Fusional (English) read-s read-3SG.PRS 'reads'

Non-concatenative

Root&Pattern (Arabic) $\mathbf{k}\langle a\rangle t\langle a\rangle b\langle a\rangle$ write-PST.3SG.M 'he wrote'

Reduplication (Indonesian) anak~anak child-PL 'children'

Qualitative Analysis

Subword	In-Vocabulary	n-Vocabulary Rare		
Unit	including	unconditional	uploading	
BPE	called	unintentional	upbeat	
bi-LSTM	involve	ungenerous	uprising	
	like	unanimous	handling	
	creating	unpalatable	hand-colored	
character	include	unconstitutional	drifted	
trigram	includes	constitutional	affected	
bi-LSTM	undermining	unimolecular	conflicted	
	include	medicinal	convicted	
character	inclusion	undamaged	musagète	
bi-LSTM	insularity	unmyelinated	mutualism	
	includes	unconditionally	mutualists	
	include	uncoordinated	meursault	

Do character-level models capture morphology in terms of predictive utility?

Language	Addition	bi-LSTM
Czech	51.8	30.1
Russian	41.8	26.4

How much training data is needed to reach perplexity obtained using annotated data?

Perplexity Results

Typology	lang v	word	character		char-trigram		BPE		Morfessor		0/:
		word	bi-lstm	CNN	add	bi-lstm	add	bi-lstm	add	bi-lstm	/omp
Fusional	Czech	41.5	34.2	36.6	42.7	33.6	50.0	33.7	47.7	36.9	19.0
	English	46.4	43.5	44.7	45.4	43.0	47.5	43.3	49.7	49.7	7.4
	Russian	34.9	28.4	29.5	35.2	27.7	40.1	28.5	39.6	31.3	20.6
Agglutinative	Finnish	24.2	20.1	20.3	24.9	18.6	26.8	19.1	27.8	22.5	23.1
	Japanese	98.1	98.1	91.6	102.0	101.1	126.5	96.8	112.0	99.2	6.6
	Turkish	67.0	54.5	55.1	50.1	54.2	59.5	57.3	62.2	62.7	25.2
Root &	Arabic	48.2	42.0	43.2	50.9	39.9	50.9	42.8	52.9	45.5	17.3
Pattern	Hebrew	38.2	31.6	33.2	39.7	30.4	44.2	32.9	44.9	34.3	20.5
Reduplication	Indonesian	46.1	45.5	46.6	58.5	46.0	59.2	43.4	59.3	44.9	5.9
	Malaysian	54.7	53.0	50.6	68.5	50.7	69.0	51.2	68.2	52.5	7.5

How do we know if these representations actually affect the predictions?

Which model most effectively captures reduplication?

THE UNIVERSITY of EDINBURGH

Engineering and Physical Sciences **Research Council**

Percentage of full reduplication on the training data:

anguage	type-level (%)	token-level (%)
donesian	1.1	2.6
Malay	1.3	2.9

"Saya membeli **buku-buku itu** kemarin ." I bought **those books** yesterday .

Character-level models are effective for many languages, but these models do not match the predictive accuracy of model with explicit knowledge of morphology.

In this study, a previously unstudied combination of character trigram composed with bi-LSTM outperform most others.

Our qualitative analysis suggests that they learn orthographic similarity of affixes.

Other factors such as morphology and orthography affect the utility of these representations.