
 Ontology Induction (Chen et al., 2013 & 2014)

Frame-semantic parsing on ASR results (Das et al., 2013)

• frame  slot candidate

• lexical unit  slot filler

 1st Issue: How to induce domain-specific concepts?
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• Domain: restaurant recommendation in an in-
car setting (WER = 37%)

o Dialogue slots: addr, area, food, phone, 
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Can a dialogue system automatically learn open 
domain knowledge and then understand users?

Unsupervised Learning and Modeling of Knowledge and Intent for Spoken Dialogue Systems

Yun-Nung (Vivian) Chen
yvchen@cs.cmu.edu

Goal Framework

Restaurant 
Asking 

Conversations

target

food
price

seeking

quantity

PREP_FOR

PREP_FOR

NN AMOD

AMOD

AMOD

Domain-Specific Ontology
Unlabeled Collection

Knowledge Acquisition

Ontology Induction
Structure Learning

Domain-Specific Ontology

price=“cheap”, target=“restaurant”
behavior=navigation

SLU Modeling by MF

SLU Component

“can i have a cheap restaurant”
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Knowledge Acquisition SLU Modeling by Matrix Factorization

 Structure Learning (Chen et al., 2015a)

Typed syntactic dependencies on ASR 
https://github.com/yvchen/MRRW/
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 Semantic Decoding (Chen et al., 2015b)

• concept  semantic slot

 Behavior Prediction

• concept  user behavior

1) Given unlabeled conversations, how can a system 
automatically induce and organize domain-specific 
concepts?

2) With the automatically acquired knowledge, how 
can a system understand utterances?
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o Relation Propagation Model

 Feature Knowledge Graph

 Concept Knowledge Graph

 Assumption: The domain-
specific features/concepts have 
more dependency to each other.

Relation matrices allow each node to propagate scores to its neighbors in 
the knowledge graph, so that domain-specific features/concepts have 
higher scores during training.

 2nd Issue: Hidden semantics cannot be observed but may benefit 
understanding performance.
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o Matrix Factorization (MF)

 Model implicit feedback
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MF learns a set of well-ranked 
concepts per utterance.
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