A Tutorial on

Graph-based Semi-Supervised Learning Algorithms for NLP

Amarnag Subramanya (Google Research)

Partha Pratim Talukdar
(Carnegie Mellon University)

Supervised Learning

Semi-Supervised Learning (SSL)

Why SSL?

How can unlabeled data be helpful?

More accurate decision boundary in the presence of unlabeled instances

With Unlabeled Data

Inductive vs Transductive

| | Inductive
 (Generalize to
 Unseen Data) |
| :---: | :---: | | Transductive
 (Doesn't Generalize to
 Unseen Data) |
| :---: |
| Supervised
 (Labeled) |
| SVM,
 Maximum Entropy |
| Semi-supervised
 (Labeled + Unlabeled) |
| Manifold
 Regularization |
| Xraph SSL
 algorithms |

Most Graph SSL algorithms are non-parametric

See Chapter 25 of SSL Book: http://olivier.chapelle.cc/ssl-book/discussion.pdf

Why Graph-based SSL?

- Some datasets are naturally represented by a graph
- web, citation network, social network, ...
- Uniform representation for heterogeneous data
- Easily parallelizable, scalable to large data
- Effective in practice

Text Classification

Graph-based SSL

Graph-based SSL

Graph-based SSL

Graph-based SSL

Graph-based SSL

Graph-based SSL

Graph-based SSL

Smoothness Assumption
If two instances are similar according to the graph, then output labels should be similar

- Effective for both relational and IID data
- Two stages
- Graph construction (if not already present)
- Label Inference

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion \& Future Work

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion \& Future Work

Graph Construction

- Neighborhood Methods
- k-NN Graph Construction
- e-Neighborhood Method
- Metric Learning
- Other approaches

Neighborhood Methods

- k-Nearest Neighbor (k-NN)
- add edges between an instance and its k-nearest neighbors

0

- e-Neighborhood
- add edges to all instances inside a ball of radius e

Issues with k-NN graphs

- Not scalable (quadratic)
- Results in an asymmetric graph
- Results in irregular graphs
- some nodes may end up with higher degree than other nodes

Issues with e-Neighborhood

- Fragmented Graph: disconnected components
- Sensitive to value of e: not invariant to scaling
- Not scalable

Figure from [Jebara et al., ICML 2009]

Graph Construction using Metric Learning

$$
\begin{aligned}
& D_{A}\left(x_{i}, x_{j}\right)=\left(x_{i}-x_{j}\right)^{7} \\
& \text { vised Metric Learning }
\end{aligned}
$$

- ITML [Kulis et al., ICML 2007]
- LMNN [Weinberger and Saul, JMLR 2009]

Estimated using Mahalanobis metric learning algorithms

- Semi-supervised Metric Learning
- IDML [Dhillon et al., UPenn TR 2010]

Benefits of Metric Learning for

Graph Construction

Datasets	Original	RP	PCA	ITML	LMNN	IDML-LM	IDML-IT
Amazon	0.4046	0.3964	0.1554	0.1418	0.2405	0.2004	$\mathbf{0 . 1 2 6 5}$
Newsgroups	0.3407	0.3871	0.3098	$\mathbf{0 . 1 6 6 4}$	0.2172	0.2136	$\mathbf{0 . 1 6 6 4}$
Reuters	0.2928	0.3529	0.2236	0.1088	0.3093	0.2731	$\mathbf{0 . 0 9 9 9}$
EnronA	0.3246	0.3493	0.2691	0.2307	0.1852	$\mathbf{0 . 1 7 0 7}$	0.2179
Text	0.4523	0.4920	0.4820	0.3072	0.3125	0.3125	$\mathbf{0 . 2 8 9 3}$
USPS	$\mathbf{0 . 0 6 3 9}$	0.0829	-	0.1096	0.1336	0.1225	0.0834
BCI	0.4508	0.4692	-	0.4217	0.3058	$\mathbf{0 . 2 9 6 7}$	0.4081
Digit	$\mathbf{0 . 0 2 1 8}$	0.0250	-	0.0281	0.1186	0.0877	0.0281

Table 3. Comparison of transductive classification performance over graphs constructed using different methods (see Section 6.1), with $n_{l}=100$ and $n_{u}=1400$.

Careful graph construction is critical!

Other Graph Construction Approaches

- Local Reconstruction
- Linear Neighborhood [Wang and Zhang, ICML 2005]
- Regular Graph: b-matching [Jebara et al., ICML 2008]
- Fitting Graph to Vector Data [Daitch et al., ICML 2009]
- Graph Kernels
- [Zhu et al., NIPS 2005]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

Label Propagation

- Modified Adsorption
- Manifold Regularization

Spectral Graph Transduction

- Measure Propagation
- Sparse Label Propagation
- Applications
- Conclusion \& Future Work

Graph Laplacian

- Laplacian (un-normalized) of a graph:

$$
\begin{aligned}
& L=D-W, \text { where } D_{i i}=\sum_{j} W_{i j}, D_{i j(\neq i)}=0 \\
& \\
& \\
& \begin{array}{l}
\mathrm{a} \\
\mathrm{~b} \\
\mathrm{c} \\
\mathrm{c} \\
\mathrm{~d}
\end{array}\left(\begin{array}{rrrr}
3 & -1 & \mathrm{c} & \mathrm{~d} \\
-1 & 4 & -3 & 0 \\
-2 & -3 & 6 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
\end{aligned}
$$

Graph Laplacian (contd.)

- L is positive semi-definite (with non-negative weights)
- Smoothness of function f over the graph in terms of the Laplacian:

$$
f^{T} L f=\sum_{i, j} W_{i j}\left(f_{i}-f_{j}\right)^{2} \mid
$$

Spectrum of the Laplacian

$\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}=\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}-\mathrm{O}$
(a) a linear unweighted graph with two segments

(b) the eigenvectors and eigenvalues of the Laplacian L

Figure from [Zhu et al., 2005]

Notations

$\hat{Y}_{v, l}:$ score of estimated label I on node v
$Y_{v, l}$: score of seed label I on node v
$R_{v, l}$: regularization target for label I on node \mathbf{v}
S : seed node indicator (diagonal matrix)
$W_{u v}$: weight of edge (u, v) in the graph

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

Label Propagation
Modified Adsorption

- Manifold Regularization
- Spectral Graph Transduction
- Measure Propagation
- Sparse Label Propagation
- Applications
- Conclusion \& Future Work

LP-ZGL [Zhu et al., ICML 2003]

$$
\begin{gathered}
\text { Smooth } \\
\arg \min _{\hat{Y}} \overbrace{\sum_{l=1}^{m} W_{u v}\left(\hat{Y}_{u l}-\hat{Y}_{v l}\right)^{2}}^{\text {such that }} \begin{array}{c}
\sum_{l=1}^{m} \hat{Y}_{l}^{T} \hat{Y}_{u l}=\hat{Y}_{u l}, \forall S_{u u}=1 \\
\text { Match Seeds } \\
\text { (hard) }
\end{array} \\
\begin{array}{c}
\text { Graph } \\
\text { Laplacian }
\end{array} \\
\hline
\end{gathered}
$$

- Smoothness
- two nodes connected by
- Solution satisfies harmonic property an edge with high weight should be assigned similar labels

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

Label Propagation
Modified Adsorption
Manifold Regularization

- Spectral Graph Transduction
- Measure Propagation
- Sparse Label Propagation
- Applications
- Conclusion \& Future Work

Two Related Views

Label Diffusion

Random Walk View

- Continue walk with probability $\mathrm{p}_{\mathrm{v}}^{\text {cont }}$
- Assign V's seed label to U with probability $\mathrm{p}_{\mathrm{v}}^{\mathrm{inj}}$
- Abandon random walk with probability $\mathrm{p}_{\mathrm{v}}^{\text {abnd }}$ - assign U a dummy label

Discounting Nodes

- Certain nodes can be unreliable (e.g., high degree nodes)
- do not allow propagation/walk through them
- Solution: increase abandon probability on such nodes:

$$
\mathbf{p}_{\mathbf{v}}^{\mathbf{a b n d}} \propto \operatorname{degree}(\mathrm{v})
$$

Redefining Matrices

$$
W_{u v}^{\prime}=p_{u}^{c o n t} \times W_{u v}
$$

New Edge
Weight

$$
S_{u u}=\sqrt{p_{u}^{i n j}}
$$

$R_{u \top}=p_{u}^{a b n d}$, and 0 for non-dummy labels

Dummy Label

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
$\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\left\|\boldsymbol{S} \hat{\boldsymbol{Y}}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l}\right\|^{2}+\mu_{1} \sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2}\right]$

- m labels, +1 dummy label
- $\boldsymbol{M}=\boldsymbol{W}^{\top}+\boldsymbol{W}^{\prime}$ is the symmetrized weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes

- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
$\left.\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\left\|\boldsymbol{S} \hat{\boldsymbol{Y}}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l}\right\|^{2}\right]+\mu_{1} \sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2}\right]$

- m labels, +1 dummy label
- $\boldsymbol{M}=\boldsymbol{W}^{\top}+\boldsymbol{W}^{\prime}$ is the symmetrized weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes

- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
$\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\begin{array}{l}\left\|\boldsymbol{S}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l}\right\|^{2} \\ \text { Match Seeds (soft) } \\ \boldsymbol{Y}_{l}\end{array} \mu_{\sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}}^{\text {Smooth }}+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2}\right]$

- m labels, +1 dummy label
- $\boldsymbol{M}=\boldsymbol{W}^{\uparrow}+\boldsymbol{W}^{\prime}$ is the symmetrized weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes

- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
Match Priors
$\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\left\|\boldsymbol{S} \hat{\boldsymbol{Y}}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l}\right\|^{2}\right]+\mu_{1} \overbrace{\sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}}^{\text {Match Seeds (soft) }}$ Smooth $+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2}]$

- m labels, +1 dummy label
- $\boldsymbol{M}=\boldsymbol{W}^{\uparrow}+\boldsymbol{W}^{\prime}$ is the symmetrized weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes

- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
Match Priors
$\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\left\|\boldsymbol{S} \hat{\boldsymbol{Y}}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l}\right\|^{2}\right]+\mu_{l}\left[\begin{array}{c}\text { Match Seeds (soft) } \\ \left.\sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}\right]+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2} \\ \hline\end{array}\right.$

- m labels, +1 dummy label
- $\boldsymbol{M}=$ for none-of-the-above label d weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes

- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
Match Priors
$\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\|^{\begin{array}{l}\text { Match Seeds (soft) }\end{array}} \begin{array}{c}\text { Smooth } \\ \text { (Regularizer) } \\ \boldsymbol{Y}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l} \|^{2} \\ \left.\sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}\right]+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2} \\ \hline\end{array}\right.$

- m labels,+1 dummy label
- $\boldsymbol{M}=$ for none-of-the-above label d weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes

- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

MAD has extra regularization compared to LP-ZGL [Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]

Modified Adsorption (MAD)

[Talukdar and Crammer, ECML 2009]
Match Priors
$\arg \min _{\hat{\boldsymbol{Y}}} \sum_{l=1}^{m+1}\left[\left\|\boldsymbol{S} \hat{\boldsymbol{Y}}_{l}-\boldsymbol{S} \boldsymbol{Y}_{l}\right\|^{2}\right]+\mu_{l}\left[\begin{array}{c}\text { Match Seeds (soft) } \\ \left.\sum_{u, v} \boldsymbol{M}_{u v}\left(\hat{\boldsymbol{Y}}_{u l}-\hat{\boldsymbol{Y}}_{v l}\right)^{2}\right]+\mu_{2}\left\|\hat{\boldsymbol{Y}}_{l}-\boldsymbol{R}_{l}\right\|^{2} \\ \hline\end{array}\right.$

- m labels, +1 dummy label
- $\boldsymbol{M}=$ for none-of-the-above label d weight matrix
- $\hat{\boldsymbol{Y}}_{v l}$: weight of label l on node v
- $\boldsymbol{Y}_{v l}$: seed weight for label l on node v
- \boldsymbol{S} : diagonal matrix, nonzero for seed nodes

- $\boldsymbol{R}_{v l}$: regularization target for label l on node v

MAD's Objective is Convex

MAD has extra regularization compared to LP-ZGL [Zhu et al, ICML 03]; similar to QC [Bengio et al, 2006]

Solving MAD Objective

- Can be solved using matrix inversion (like in LP)
- but matrix inversion is expensive (cubic)
- Instead solved exactly using a system of linear equations
- solved using Jacobi iterations
- results in iterative updates
- guaranteed convergence
- see [Bengio et al., 2006] and
[Talukdar and Crammer, ECML 2009] for details

Solving MAD using Iterative Updates

Inputs $\boldsymbol{Y}, \boldsymbol{R}:|V| \times(|L|+1), \boldsymbol{W}:|V| \times|V|, \boldsymbol{S}:|V| \times|V|$ diagonal $\hat{\boldsymbol{Y}} \leftarrow \boldsymbol{Y}$ $\boldsymbol{M}=\boldsymbol{W}^{\prime}+\boldsymbol{W}^{\star}$ $Z_{v} \leftarrow \boldsymbol{S}_{v v}+\mu_{1} \sum_{u \neq v} \boldsymbol{M}_{v u}+\mu_{2}$ repeat
for all $v \in V$ do

$$
\hat{\boldsymbol{Y}}_{v} \leftarrow \frac{1}{Z_{v}}\left((\boldsymbol{S} \boldsymbol{Y})_{v}+\mu_{1} \boldsymbol{M}_{v} \cdot \hat{\boldsymbol{Y}}+\mu_{2} \boldsymbol{R}_{v}\right)
$$

end for
until convergence

Solving MAD using Iterative Updates

Inputs $\boldsymbol{Y}, \boldsymbol{R}:|V| \times(|L|+1), \boldsymbol{W}:|V| \times|V|, \boldsymbol{S}:|V| \times|V|$ diagonal $\hat{\boldsymbol{Y}} \leftarrow \boldsymbol{Y}$ $\boldsymbol{M}=\boldsymbol{W}^{\prime}+\boldsymbol{W}^{\star}$ $Z_{v} \leftarrow \boldsymbol{S}_{v v}+\mu_{1} \sum_{u \neq v} \boldsymbol{M}_{v u}+\mu_{2} \quad \forall v \in V$ repeat
for all $v \in V$ do

$$
\hat{\boldsymbol{Y}}_{v} \leftarrow \frac{1}{Z_{v}}\left((\boldsymbol{S} \boldsymbol{Y})_{v}+\mu_{1} \boldsymbol{M}_{v} \cdot \hat{\boldsymbol{Y}}+\mu_{2} \boldsymbol{R}_{v}\right)
$$

end for
until convergence

Solving MAD using Iterative Updates

Inputs $\boldsymbol{Y}, \boldsymbol{R}:|V| \times(|L|+1), \boldsymbol{W}:|V| \times|V|, \boldsymbol{S}:|V| \times|V|$ diagonal $\hat{\boldsymbol{Y}} \leftarrow \boldsymbol{Y}$ $\boldsymbol{M}=\boldsymbol{W}^{\prime}+\boldsymbol{W}^{\boldsymbol{\dagger}}$ $Z_{v} \leftarrow \boldsymbol{S}_{v v}+\mu_{1} \sum_{u \neq v} \boldsymbol{M}_{v u}+\mu_{2} \quad \forall v \in V$ repeat
for all $v \in V$ do

$$
\hat{\boldsymbol{Y}}_{v} \leftarrow \frac{1}{Z_{v}}\left((\boldsymbol{S} \boldsymbol{Y})_{v}+\mu_{1} \boldsymbol{M}_{v} \cdot \hat{\boldsymbol{Y}}+\mu_{2} \boldsymbol{R}_{v}\right)
$$

end for
until convergence

- Importance of a node can be discounted
- Easily Parallelizable: Scalable (more later)

When is MAD most effective?

MAD is particularly effective in denser graphs, where there is greater need for regularization.

Extension to Dependent Labels

Labels are not always mutually exclusive

MAD with Dependent Labels (MADDL) [Talukdar and Crammer, ECML 2009]

MADDL Objective

Smooth Sentiment Ranking

Smooth Sentiment Ranking

Smooth Sentiment Ranking

Smooth Sentiment Ranking

MADDL Label Constraints

Smooth Sentiment Ranking

Count of Top Predicted Pair in MAD Output
Count of Top Predicted Pair in MADDL Output

MADDL generates smoother ranking, while preserving accuracy of prediction.

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

Label Propagation

- Modified Adsorption

Manifold Regularization
Spectral Graph Transduction

- Measure Propagation
- Sparse Label Propagation
- Applications
- Conclusion \& Future Work

Manifold Regularization [Belkin et al., JMLR 2006]

$$
\begin{aligned}
f^{*}=\arg \min _{f} & \frac{1}{l} \sum_{i=1}^{l} V\left(y_{i}, f\left(x_{i}\right)\right)+\gamma_{A}\|f\|_{K}^{2}+\beta f^{T} \underset{A}{L} f \\
& \begin{array}{c}
\text { Loss Function } \\
\text { (e.g., soft margin) }
\end{array}
\end{aligned}
$$

Trains an inductive classifier (e.g., SVM) which can generalize to unseen instances

Manifold Regularization [Belkin et al., JMLR 2006]

$$
f^{*}=\arg \min _{f} \frac{1}{l} \sum_{i=1}^{l} \underbrace{\substack{\text { Training Data } \\ \text { Loss }}}_{\substack{\text { Loss Function } \\ \text { (e.g., soft margin) }}} \underbrace{\substack{\text { Ly }}}_{\substack{\text { Laplacian of graph } \\ \text { over labeled and } \\ \text { unlabeled data }}}
$$

Trains an inductive classifier (e.g., SVM) which can generalize to unseen instances

Manifold Regularization [Belkin et al., JMLR 2006]

$$
f^{*}=\arg \min _{f} \frac{1}{l} \sum_{i=1}^{l} \overbrace{\substack{\text { Loss Function } \\ \text { (e.g., soft margin) }}}^{\substack{\text { Training Data } \\ \text { Loss }}}+y_{i}, f\left(x_{i}\right))+\underbrace{\substack{\text { Regulairzer } \\ \text { (e.g., L2) }}}_{\gamma_{A}\|f\|_{K}^{2}}+\beta f^{T} L f
$$

Trains an inductive classifier (e.g., SVM) which can generalize to unseen instances

Manifold Regularization [Belkin et al., JMLR 2006]

$$
f^{*}=\arg \min _{f} \frac{1}{l} \sum_{i=1}^{l} \underbrace{\begin{array}{c}
\text { Training Data } \\
\text { Loss }
\end{array}}_{\substack{\text { Loss Function } \\
\text { (e.g., soft margin) }}}+y_{i}, f\left(x_{i}\right))+\gamma_{A} \begin{gathered}
\begin{array}{c}
\text { Regulairzer } \\
(\text { e.g., L2) }
\end{array} \\
\begin{array}{c}
\text { Smoothness } \\
\text { Regularizer }
\end{array} \\
\underbrace{T}_{K} L f
\end{gathered}
$$

Trains an inductive classifier (e.g., SVM) which can generalize to unseen instances

Spectral Graph Transduction [Joachims, ICML 2003]

- Approximation to normalized graph cut with constraints
- Performs spectral analysis (finds eigenvalues and eigenfunctions) of the normalized Laplacian
- Code: http://sgt.joachims.org/

Outline

- Motivation
- Graph Construction
- Inference Methods - Manifold Regularization
- Spectral Graph Transduction
- Scalability
- Sparse Label Propagation
- Applications
- Conclusion \& Future Work

Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 20I0]

$C_{K L}$

Normalization Constraint
$C_{K L}$ is convex (with non-negative edge weights and hyper-parameters) MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]

Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 20I0]
$C_{K L}$
Divergence on

Normalization Constraint
$C_{K L}$ is convex (with non-negative edge weights and hyper-parameters) MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]

Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 20I0]
$C_{K L}$
Divergence on

$C_{K L}$ is convex (with non-negative edge weights and hyper-parameters) MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]

Measure Propagation (MP)

[Subramanya and Bilmes, EMNLP 2008, NIPS 2009, JMLR 20I0]

$C_{K L}$ is convex (with non-negative edge weights and hyper-parameters) MP is related to Information Regularization [Corduneanu and Jaakkola, 2003]

Solving MP Objective

- For ease of optimization, reformulate MP objective:

$C_{M P}$

CMP is also convex

(with non-negative edge weights and hyper-parameters)
Encourages agreement between p_{i} and q_{i}

$$
\underset{\mathrm{p} \in \Delta^{n}}{\operatorname{argmin}} C_{K L}(\mathrm{p})=\lim _{\alpha \rightarrow \infty} \underset{\mathrm{p}, \mathrm{q} \in \Delta^{n}}{\operatorname{argmin}} C_{M P}(\mathrm{p}, \mathrm{q})
$$

CMP can be solved using Alternating Minimization (AM)

Alternating Minimization

Convex sets \mathcal{P} and \mathcal{Q}.

Given distance $d(P, Q)$ with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.

Alternating Minimization

Convex sets \mathcal{P} and \mathcal{Q}.

Given distance $d(P, Q)$ with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$. Start with $Q_{0} \in \mathcal{Q}$

Alternating Minimization

Alternating Minimization

Given distance $d(P, Q)$
with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.
Start with $Q_{0} \in \mathcal{Q}$
$P_{1}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{0}\right)$
$Q_{1}=\underset{Q}{\operatorname{argmin}} d\left(P_{1}, Q\right)$

Alternating Minimization

Given distance $d(P, Q)$
with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.
Start with $Q_{0} \in \mathcal{Q}$
$P_{1}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{0}\right)$
$Q_{1}=\underset{Q}{\operatorname{argmin}} d\left(P_{1}, Q\right)$
$P_{2}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{1}\right)$

Alternating Minimization

Given distance $d(P, Q)$
with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.
Start with $Q_{0} \in \mathcal{Q}$
$P_{1}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{0}\right)$
$Q_{1}=\underset{Q}{\operatorname{argmin}} d\left(P_{1}, Q\right)$
$P_{2}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{1}\right)$
$Q_{2}=\underset{Q}{\operatorname{argmin}} d\left(P_{2}, Q\right)$

Alternating Minimization

Given distance $d(P, Q)$
with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.
Start with $Q_{0} \in \mathcal{Q}$
$P_{1}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{0}\right)$
$Q_{1}=\underset{Q}{\operatorname{argmin}} d\left(P_{1}, Q\right)$
$P_{2}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{1}\right)$
$Q_{2}=\underset{Q}{\operatorname{argmin}} d\left(P_{2}, Q\right)$
$P_{3}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{2}\right)$

Alternating Minimization

Given distance $d(P, Q)$
with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.
Start with $Q_{0} \in \mathcal{Q}$
$P_{1}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{0}\right)$
$Q_{1}=\underset{Q}{\operatorname{argmin}} d\left(P_{1}, Q\right)$
$P_{2}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{1}\right)$
$Q_{2}=\underset{Q}{\operatorname{argmin}} d\left(P_{2}, Q\right)$
$P_{3}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{2}\right)$

Alternating Minimization

Given distance $d(P, Q)$
with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.
Start with $Q_{0} \in \mathcal{Q}$
$P_{1}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{0}\right)$
$Q_{1}=\underset{Q}{\operatorname{argmin}} d\left(P_{1}, Q\right)$
$P_{2}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{1}\right)$
$Q_{2}=\underset{Q}{\operatorname{argmin}} d\left(P_{2}, Q\right)$
$P_{3}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{2}\right)$

Alternating Minimization

Given distance $d(P, Q)$
with $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$.
Start with $Q_{0} \in \mathcal{Q}$
$P_{1}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{0}\right)$
$Q_{1}=\underset{Q}{\operatorname{argmin}} d\left(P_{1}, Q\right)$
$P_{2}=\underset{P}{\operatorname{argmin}} d\left(P, Q_{1}\right)$
$Q_{2}=\underset{Q}{\operatorname{argmin}} d\left(P_{2}, Q\right)$
CMP satisfies the necessary conditions for AM to converge [Subramanya and Bilmes, JMLR 2010]

Why AM?

Criteria	MOM	AM
Iterative	YES	YES
Learning Rate	Armijo Rule	None
Number of Hyper-parameters	7	$1(\alpha)$
Test for Convergence	Requires Tuning	Automatic
Update Equations	Not Intuitive	Intuitive and easily Parallelized

Table 1: There are two ways to solving the proposed objective, námely, the popular numerical optimization tool method of multipliers (MOM), and the proposed approach based on alternating minimization (AM). This table compares the two approaches on various fronts.

$$
\begin{gathered}
p_{i}^{(n)}(y)=\frac{\exp \left\{\frac{\mu}{\gamma_{i}} \sum_{j} w_{i j}^{\prime} \log q_{j}^{(n-1)}(y)\right\}}{\sum_{y} \exp \left\{\frac{\mu}{\gamma_{i}} \sum_{j} w_{i j}^{\prime} \log q_{j}^{(n-1)}(y)\right\}} \\
q_{i}^{(n)}(y)=\frac{r_{i}(y) \delta(i \leq l)+\mu \sum_{j} w_{j i}^{\prime} p_{j}^{(n)}(y)}{\delta(i \leq l)+\mu \sum_{j} w_{j i}^{\prime}} \\
\text { where } \gamma_{i}=v+\mu \sum_{j} w_{i j}^{\prime}
\end{gathered}
$$

Performance of SSL Algorithms

	COIL						OPT					
l	10	20	50	80	100	150	10	20	50	80	100	150
k-NN	34.5	53.9	66.9	77.9	79.2	83.5	79.6	83.9	85.5	90.5	92.0	93.8
SGT	40.1	61.2	78.0	88.5	89.0	89.9	90.4	90.6	91.4	94.7	$\mathbf{9 7 . 4}$	$\mathbf{9 7 . 4}$
LapRLS	$\mathbf{4 9 . 2}$	61.4	78.4	80.1	84.5	87.8	89.7	$\mathbf{9 1 . 2}$	92.3	96.1	$\mathbf{9 7 . 6}$	$\mathbf{9 7 . 3}$
SQ-Loss-I	$\mathbf{4 8 . 9}$	63.0	$\mathbf{8 1 . 0}$	87.5	89.0	90.9	$\mathbf{9 2 . 2}$	90.2	$\mathbf{9 5 . 9}$	$\mathbf{9 7 . 2}$	$\mathbf{9 7 . 3}$	$\mathbf{9 7 . 7}$
MP	47.7	$\mathbf{6 5 . 7}$	78.5	$\mathbf{8 9 . 6}$	$\mathbf{9 0 . 2}$	$\mathbf{9 1 . 1}$	$\mathbf{9 0 . 6}$	$\mathbf{9 0 . 8}$	94.7	$\mathbf{9 6 . 6}$	$\mathbf{9 7 . 0}$	$\mathbf{9 7 . 1}$

Comparison of accuracies for different number of labeled samples across COIL (6 classes) and OPT (10 classes) datasets

Graph SSL can be effective when the data satisfies manifold assumption. More results and discussion in Chapter 21 of the SSL Book (Chapelle et al.)

Outline

- Motivation
- Graph Construction
- Inference Methods - Manifold Regularization
- Spectral Graph Transduction
- Scalability
- Measure Propagation

Sparse Label Propagation

- Applications
- Conclusion \& Future Work

Background: Factor Graphs [Kschischang et al., 200I]

Factor Graph

- bipartite graph
- variable nodes (e.g., label distribution on a node)
- factor nodes: fitness function over variable assignment

Distribution over all variables' values

$$
\log P\left(\{v\}_{v \in V}\right)=-\log Z+\sum_{f \in F} \log \alpha_{f}\left(\{v\}_{(v, f) \in E}\right)
$$

Factor Graph Interpretation of

Graph SSL [Zhu etal, ICML 2003] [Das and Smith, NAACL 2012]

Factor Graph Interpretation

 [Zhu et al., ICML 2003][Das and Smith, NAACL 20I2]

Label Propagation with Sparsity

Enforce through sparsity inducing unary factor

Lasso (Tibshirani, 1996) $\log \psi_{t}\left(q_{t}\right)=-\lambda\left\|q_{t}\right\|_{1}$

Elitist Lasso (Kowalski and Torrésani, 2009)

$$
\log \psi_{t}\left(q_{t}\right)=-\lambda\left(\left\|q_{t}\right\|_{1}\right)^{2}
$$

For more details, see [Das and Smith, NAACL 2012]

Other Graph-SSL Methods

- SSL on Directed Graphs
- [Zhou et al, NIPS 2005], [Zhou et al., ICML 2005]
- Learning with dissimilarity edges
- [Goldberg et al.,AISTATS 2007]
- Graph Transduction using Alternating Minimization
- [Wang et al., ICML 2008]
- Graph as regularizer for Multi-Layered Perceptron
- [Karlen et al., ICML 2008], [Malkin et al., Interspeech 2009]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability $\left[\begin{array}{l}\text { Scalability Issues } \\ \text { Node reordering } \\ \text { MapReduce Parallelization }\end{array}\right.$
- Applications
- Conclusion \& Future Work

More (Unlabeled) Data is Better Data

Challenges with large unlabeled data:

- Constructing graph from large data
- Scalable inference over large graphs

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability

- Applications
- Conclusion \& Future Work

Scalability Issues (I)

Graph Construction

- Brute force (exact) k-NN too expensive (quadratic)
- Approximate nearest neighbor using kd-tree [Friedman et al., 1977]
- Approximate Nearest Neighbor library (http://www.cs.umd.edu/~mount/)

Scalability Issues (II)
 Label Inference

- Sub-sample the data
- Construct graph over a subset of a unlabeled data [Delalleau et al.,AISTATS 2005]
- Sparse Grids [Garcke \& Griebel, KDD 200I]

Scalability Issues (II)
 Label Inference

- Sub-sample the data
- Construct graph over a subset of a unlabeled data [Delalleau et al.,AISTATS 2005]
- Sparse Grids [Garcke \& Griebel, KDD 200I]
- How about using more compute? (next section)
- Symmetric multi-processor (SMP)
- Distributed Computer

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Scalability Issues

Node reordering
[Subramanya \& Bilmes, JMLR 201 I;
Bilmes \& Subramanya, 201I]
MapReduce Parallelization

- Conclusion \& Future Work

Label Update using Message Passing

Label Update using Message Passing

Speed-up on SMP

[Subramanya \& Bilmes, JMLR, 20II]

Speed-up on SMP

[Subramanya \& Bilmes, JMLR, 20II]

Speed-up on SMP

[Subramanya \& Bilmes, JMLR, 20I I]

Node Reordering Algorithm

Input: Graph $G=(V, E)$
Result: Node ordered graph
I. Select an arbitrary node v
2. while unselected nodes remain do
2. I. select an unselected node v` from among the neighbors' neighbors of \(v\) that has maximum overlap with v' neighbors 2.2. mark v \(^{`}\) as selected
2.3. set \vee to $v^{`}$

Node Reordering Algorithm

Input: Graph $G=(V, E)$
Result: Node ordered graph
I. Select an arbitrary node v
2. while unselected nodes remain do
2. I. seleselected node v` from among the neighbors' neighbors of \(v\) that has maximum overlap with v neighbors 2.2. mark v \(^{`}\) as selected
2.3. set \vee to $v^{`}$

Node Reordering Algorithm

Input: Graph G = (V, E)
Result: Node ordered graph

Exhaustive for sparse (e.g., k-NN) graphs
2. while unselected nodes rernain do
2.I. selectect node v from among the neighbors' neighbors of v that has maximum overlap with v neighbors
2.2. mark \vee as selected
2.3. set v to $\mathrm{v}^{\text { }}$

Node Reordering Algorithm : Intuition

Node Reordering Algorithm : Intuition

Node Reordering Algorithm : Intuition

Node Reordering Algorithm : Intuition

Speed-up on SMP after Node Ordering

[Subramanya \& Bilmes, JMLR, 20 II]

Distributed Processing

- Maximize overlap between consecutive nodes within the same machine
- Minimize overlap across machines (reduce inter machine communication)

Distributed Processing

[Bilmes \& Subramanya, 20II]

Distributed Processing

Node reordering for Distributed Computer

Processor \#i Processor \#j

Node reordering for Distributed Computer

Processor \#i Processor \#j

Node reordering for Distributed Computer

Processor \#i Processor \#j

Distributed Processing Results

[Bilmes \& Subramanya, 20II]

Distributed Processing Results

[Bilmes \& Subramanya, 20II]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability $\quad\left[\begin{array}{l}\text { Scalability Issues } \\ \text { Node reordering }\end{array}\right.$ MapReduce Parallelization
- Applications
- Conclusion \& Future Work

MapReduce Implementation of MAD

MapReduce Implementation of MAD

- Map
- Each node send its current label assignments to its neighbors

MapReduce Implementation of MAD

- Map
- Each node send its current label assignments to its neighbors

MapReduce Implementation of MAD

- Map
- Each node send its current label assignments to its neighbors
- Reduce
- Each node updates its own label assignment using messages received from neighbors, and its own information (e.g., seed labels, reg. penalties etc.)
- Repeat until convergence

MapReduce Implementation of MAD

- Map
- Each node send its current label assignments to its neighbors
- Reduce
- Each node updates its own label assignment using messages received from neighbors, and its own information (e.g., seed labels, reg. penalties etc.)
- Repeat until convergence

MapReduce Implementation of MAD

- Map
- Each node send its current label assignments to its neighbors
- Reduce

- Each node updates its own label assignment using messages received from neighbors, and its labe Code in Junto Label Propagation Toolkit
- Repe
(includes Hadoop-based implementation)

http://code.google.com/p/junto/

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications Semantic Parsing
- Conclusion \& Future Work

Problem Description \& Motivation

- Given a document (e.g., web page, news article), assign it to a fixed number of semantic categories (e.g., sports, politics, entertainment)
- Multi-label problem
- Training supervised models requires large amounts of labeled data [Dumais et al., 1998]

Corpora

- Reuters [Lewis, et al., 1978]
- Newswire
- About 20K document with 135 categories. Use top 10 categories (e.g.,"earnings","acquistions", "wheat","interest") and label the remaining as "other"

Corpora

- Reuters [Lewis, et al., 1978]
- Newswire
- About 20K document with 135 categories. Use top 10 categories (e.g.,"earnings","acquistions", "wheat","interest") and label the remaining as "other"
- WebKB [Bekkerman, et al., 2003]
- 8 K webpages from 4 academic domains
- Categories include "course","department", "faculty" and "project"

Feature Extraction

Showers continued throughout the week in the Bahia cocoa zone, alleviating the drought since early January and improving prospects for the coming temporao, ...

Document
[Lewis, et al., 1978]

Feature Extraction

Feature Extraction

Feature Extraction

Results

Average PRBEP	SVM	TSVM	SGT	LP	MP	MAD
Reuters	48.9	59.3	60.3	59.7	$\mathbf{6 6 . 3}$	-
WebKB	23.0	29.2	36.8	41.2	51.9	$\mathbf{5 3 . 7}$

Precision-recall break even point (PRBEP)

Results

Precision-recall break even point (PRBEP)

Results

Precision-recall break even point (PRBEP)

Results

Precision-recall break even point (PRBEP)

Results on WebKB

[Subramanya \& Bilmes, EMNLP 2008]

Results on WebKB

[Subramanya \& Bilmes, EMNLP 2008]

Results on WebKB

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

- Conclusion \& Future Work

Problem Description

- fortunately, they managed to do it in an interesting and funny way.
- he is one of the most exciting martial artists on the big screen.
- the romance was enchanting.
- A woman in peril. A confrontation. An explosion. The end. Yawn. Yawn. Yawn.
- don't go see this movie

Movie review dataset [Pang et al. EMNLP 2002]

Problem Description

- Given a document either
- classify it as expressing a positive or negative sentiment or
- assign a star rating
- Similar to text categorization
- Can be solved using standard machine learning approaches [Pang, Lee \& Vaidyanathan, EMNLP 2002]

Polarity Lexicons (I)

- Large lists of phrases that encode the polarity (positive or negative) of each phrase
- Positive polarity: "enjoyable","breathtakingly", "once in a life time"
- Negative polarity:"bad","humorless", "unbearable","out of touch","bumps in the road"
- Best results obtained by combining with machine learning approaches [Wilson et al., HLT-EMNLP 05; BlairGoldensohn et al. 08; Choi \& Cardie EMNLP 09]

Polarity Lexicons (II)

- Common strategy: start with two small seed sets
- P: positive phrases, e.g.,"great" "fantastic"
- N: negative phrases, e.g.,"awful","dreadful"
- Grow lexicons with graph propagation algorithms

Polarity Lexicons (II)

- Common strategy: start with two small seed sets
- P: positive phrases, e.g.,"great" "fantastic"
- N : negative phrases, e.g.,"awful","dreadful"
- Grow lexicons with graph propagation algorithms

Polarity Lexicons (II)

- Common strategy: start with two small seed sets
- P: positive phrases, e.g.,"great" "fantastic"
- N : negative phrases, e.g.,"awful","dreadful"
- Grow lexicons with graph propagation algorithms

Polarity Lexicons (II)

- Common strategy: start with two small seed sets
- P: positive phrases, e.g.,"great" "fantastic"
- N : negative phrases, e.g.,"awful","dreadful"
- Grow lexicons with graph propagation algorithms

Polarity Lexicons (II)

- Common strategy: start with two small seed sets
- P: positive phrases, e.g.,"great" "fantastic"
- N : negative phrases, e.g.,"awful","dreadful"
- Grow lexicons with graph propagation algorithms

Graph Construction (I)

- WordNet [Hu \& Liu, KDD 04; Kim \& Hovy, ICCL 04; BlairGoldensohn 08; Rao \& Ravichandran EACL 09]
- Defines synonyms, antonyms, hypernyms, etc.
- Make edges between synonyms
- Enforce constraints between antonyms
- Issues
- coverage
- hard to find resources for all languages

Graph Construction (II)

- Use web data!
- All n-grams (phrases) up to length 10 from 4 billion web pages
- Pruned down to 20 million candidate phrases
- Feature vector obtained by aggregating words that occurred in local context
- Graph is more "syntactic" than "semantic"

Graph Propagation (I)

Graph Propagation (I)

Graph Propagation (II)

Graph Propagation (III)

Graph Propagation (III)

"Best Path to Seed" Propagation

"Best Path to Seed" Propagation

"Best Path to Seed" Propagation

[Velikovich, et al., NAACL 20I0]

"Best Path to Seed" Propagation

[Velikovich, et al., NAACL 20I0]

"Best Path to Seed" Propagation

-0. 1
so-so

[Velikovich, et al., NAACL 20I0]

"Best Path to Seed" Propagation

Key observation: sentiment phrases are those that have short highly weighted paths to multiple seeds

Results

Lexicon	Phrases	Positive	Negative
Wilson et al. 2005	7,618	2,718	4,900
WordNet LP [Blair-Goldensohn et al. 07]	12,310	5,705	6,605
Web GP [Velikovich et al. 2010]	$\mathbf{1 7 8 , 1 0 4}$	$\mathbf{9 0 , 3 3 7}$	$\mathbf{8 7 , 7 6 7}$
Size Of the OUtPut lexicon			

Results

	Spelling variations loveable nicee niice cooool coooool koool kewl
What you'd expect ? ?	

[Velikovich, et al., NAACL 20I0]

Results

Positive

What you'd expect
excellent
fabulous
beautiful
inspiring
awesome
plucky
ravishing
brilliant
nice
delightful
splendid
incredible
stupendous
comfortable

Multi-word expressions once in a life time state - of - the - art fail - safe operation just what you need just what the doctor ordered out of this world top of the line melt in your mouth snug as a bug up to the job out of the box more good than bad

Ability to learn spelling variations and mistakes

Vulgarity, ???
\$\#\%! face \$\#\%!ed up
Negative
shut your $\$ \# \%$!ing mouth complete bull\$\#\%!
bladder spasms green slime vacuum of leadership electro - static discharge muttered under his breath harm to the environment

What you'd expect
bad
awful
terrible
dirty
repulsive
crappy
sucky
subpar
horrendous
miserable
lousy
abysmal
stupid
wretched

Multi-word expressions run of the mill out of touch over the hill flash in the pan bumps in the road hit or miss foaming at the mouth dime a dozen pie - in - the - sky cast a pall over
sick to my stomach pain in my ass

Results

[Velikovich, et al., NAACL 20I0]

Results

Resulting lexicon is larger in size and has much better precision

Results

${ }^{0,9} \mathrm{EF}$

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

- Conclusion \& Future Work

Problem Description

- Given an entity, assign human readable descriptors to it
- Toyota is a car manufacturer, japanese company, multinational company
- African countries such as Uganda and Angola
- Large scale, open domain (> 100 classes)
- Applications
- web search, advertising, etc.

Extraction Techniques

Extraction Techniques

....
What Other Musicians Would Fans of the Album Listen to:
Storytelling musicians come to mind. Musicians
such as Johnny Cash, and Woodie Guthrie.
What is Distinctive About this Release?:
Every song on the album has its own unique sound. From the fast paced That Texas Girl to the acoustic ...

[van Durme and Pasca, AAAI 2008]

- Uses "<Class> such as <Instance>" patterns
- Extracts both class (musician) and instance (Johnny Cash)

Extraction Techniques

What Other Musicians Would Fans of the Album Listen to:
Storytelling musicians come to mind. Musicians
such as Johnny Cash, and Woodie Guthrie.
What is Distinctive About this Release?:
Every song on the album has its own unique sound. From the fast paced That Texas Girl to the acoustic.

[van Durme and Pasca,AAAI 2008]

- Uses "<Class> such as <Instance>" patterns
- Extracts both class (musician) and instance (Johnny Cash)

Extractions from HTML lists and tables

- [Wang and Cohen, ICDM 2007]
- WebTables [Cafarella et al.,VLDB 2008], I54 million HTML tables

Extraction Techniques

Graph Construction

Pattern

Graph Construction

Graph Construction

Extraction Confidence

Set I
Bob Dylan (0.95)
Johnny Cash (0.87)
Billy Joel (0.82)

Graph Construction

Extraction Confidence

Graph Construction

Extraction Confidence

Set I
Bob Dylan (0.95)
Johnny Cash (0.87)
Billy Joel (0.82)

Bob Dylan

> Johnny Cash

Billy Joel

Graph Construction

Extraction Confidence

Pet I
Bob Dylan (0.95)
Johnny Cash (0.87)
Billy Joel (0.82)

Billy Joel

Graph Construction

Graph Construction

Graph Construction

Satern
Bob Dylan (0.95)
Johnny Cash (0.87)
Billy Joel (0.82)

Graph Construction

- Bi-partite graph (not a k-NN graph)
- "Set" nodes encourage members of the set to have similar labels
- Natural way to represent extractions from many sources and methods

Goal

Goal

Goal

Goal

Goal

Graph Propagation

Evaluation Metric

Mean Reciprocal Rank

$$
\operatorname{MRR}=\frac{1}{\mid \text { test-set } \mid} \sum_{v \in \operatorname{test}-\mathrm{set}} \frac{1}{\operatorname{rank}_{v}(\operatorname{class}(v))}
$$

Evaluation Metric

Mean Reciprocal Rank

$$
\operatorname{MRR}=\frac{1}{\mid \text { test-set } \mid} \sum_{v \in \operatorname{test}-\mathrm{set}} \frac{1}{\operatorname{rank}_{v}(\operatorname{class}(v))}
$$

Evaluation Metric

Mean Reciprocal Rank

$$
\operatorname{MRR}=\frac{1}{\mid \text { test-set } \mid} \sum_{v \in \operatorname{test}-\mathrm{set}} \frac{1}{\operatorname{rank}_{v}(\operatorname{class}(v))}
$$

Evaluation Metric

Mean Reciprocal Rank

$$
\mathrm{MRR}=\frac{1}{\mid \text { test-set } \mid} \sum_{v \in \text { test-set }} \frac{1}{\operatorname{rank}_{v}(\operatorname{class}(v))}
$$

Extraction for Known Instances

Evaluation against WordNet Dataset (38 classes, 8910 instances)

Extraction for Known Instances

Adsorption is able to assign better class labels to more instances.

Graph with
1.4 m nodes, 75 m edges used.

Evaluation against WordNet Dataset (38 classes, 8910 instances)

Extracted Pairs

Total classes: 908 |

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology, ...
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan, ...
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper Canyon Press, ...

Extracted Pairs

Total classes: 908 I

Class	A few non-seed Instances found by Adsorption
Scientific Journals	Journal of Physics, Nature, Structural and Molecular Biology, Sciences Sociales et sante, Kidney and Blood Pressure Research, American Journal of Physiology-Cell Physiology, ...
NFL Players	Tony Gonzales, Thabiti Davis, Taylor Stubblefield, Ron Dixon, Rodney Hannan, ...
Book Publishers	Small Night Shade Books, House of Ansari Press, Highwater Books, Distributed Art Publishers, Cooper
Graph-based methods can easily handle large	
number of classes	

Results

Data available @ http://www.talukdar.net/datasets/class_inst/
TextRunner Graph, 170 WordNet Classes

Results

Freebase-2 Graph, 192 WordNet Classes

Semantic Constraints

Semantic Constraints

Suppose we knew that both "Johnny Cash" and "Billy Joel" have albums.

How do we encode this constraint?

Solution (I)

Both "Johnny Cash" and "Billy Joel" have albums.

Solution (I)

Both "Johnny Cash" and "Billy Joel" have albums.

Solution (I)

Both "Johnny Cash" and "Billy Joel" have albums.

- Graph is no longer bi-partite (not necessarily bad)
- Can lead to cliques of size of number of instances in the constraint (bad)

Solution (II)

Both "Johnny Cash" and "Billy Joel" have albums.

[Talukdar \& Periera,ACL 2010]

Solution (II)

Both "Johnny Cash" and "Billy Joel" have albums.

Isaac
Newton
[Talukdar \& Periera, ACL 20I0]

Solution (II)

Both "Johnny Cash" and "Billy Joel" have albums.

[Talukdar \& Periera, ACL 20I0]

Solution (II)

Both "Johnny Cash" and "Billy Joel" have albums.

Semantic Constraints may be easily encoded
[Talukdar \& Periera, ACL 20I0]

Results with Semantic Constraints

[Talukdar \& Periera, ACL 20I0]

Results with Semantic Constraints

[Talukdar \& Periera, ACL 20I0]

Results with Semantic Constraints

[Talukdar \& Periera, ACL 20I0]

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications —— Semantic Parsing
- Conclusion \& Future Work

Motivation

Motivation

Motivation

Small amounts of labeled source domain data

... VBD DT NN VBG DT
... bought a book detailing the ...
... VBD TO VB DT NN TO
... wanted to book a flight to ...
... DT NN VBZ PP DT
... the book is about the ...

Motivation

Small amounts of labeled source domain data

... VBD DT NN VBG DT
Domain Adaptation
... bought a book detailing the ...
... VBD TO VB DT NN TO ...
... wanted to book a flight to ...
... how to book a band ...
can you book a day room ...
... DT NN VBZ PP DT
... the book is about the ...

Motivation

Small amounts of labeled source domain data

... VBD DT NN VBG DT
Domain Adaptation
... bought a book detailing the ...
... VBD TO VB DT NN TO ...
... wanted to book a flight to ...
... how to book a band ...
can you book a day room ...
... DT NN VBZ PP DT
... the book is about the ..

Motivation

Small amounts of labeled source domain data

... DT NN VBZ PP DT
... the book is about the ..

Motivation

Graph Construction (I)

"when do you book plane tickets?"
"do you read a book on the plane?"

Graph Construction (I)

Graph Construction (I)

Graph Construction (II)

can you book a day room at hilton hawaiian village ?
what was the book that has no letter e?
how much does it cost to book a band ?
how to get a book agent ?

Graph Construction (II)

can you book a day room at hilton hawaiian village ?
what was the book that has no letter e?
how much does it cost to book a band ?
how to get a book agent ?

Graph Construction (II)

can you book a day room at hilton hawaiian village ?
what was the book that has no letter e?
how much does it cost to book a band ?
how to get a book agent ?

Graph Construction (II)

\author{

-
 you book a
}
the book that
a book agent
to book a

Graph Construction (II)

k-nearest neighbors?

\author{

-
 the book that
}
a book agent to book a

Graph Construction (III)

Graph Construction (III)

Graph Construction (III)

Graph Construction - Features

how much does it cost to book a band ?

Graph Construction - Features

how much does it cost to book a band ?

Graph Construction - Features

how much does it cost to book a band ?

Trigram + Context	cost to book a band

Graph Construction - Features

how much does it cost to book a band ?

Trigram + Context	cost to book a band
Left Context	cost to

Graph Construction - Features

how much does it cost to book a band ?

Trigram + Context	cost to book a band
Left Context	cost to
Right Context	a band

Graph Construction - Features

how much does it cost to book a band ?

Trigram + Context	cost to book a band
Left Context	cost to
Right Context	a band
CenterWord	book

Graph Construction - Features

how much does it cost to book a band ?

Trigram + Context	cost to book a band
Left Context	cost to
Right Context	a band
CenterWord	book
Trigram - Center Word	to ___ a
Left Word + Right Context	to ___ a band
Left Context + RightWord	cost to ___ a
Suffix	none

Graph Construction - Features

how much to book a flight to paris?
how much does it cost to book a band ?

Graph Construction - Features

how much to book a flight to paris?
how much does it cost to book a band ?

Graph Construction - Features

how much to book a flight to paris?
how much does it cost to book a band ?

Graph Construction - Features

how much to book a flight to paris?
how much does it cost to book a band ?

Graph Construction - Features

to book a

Graph Construction - Features

Trigram + Context	
Left Context	
Right Context	
CenterWord	
Trigram - CenterWord	
LeftWord + Right Context	
	Left Context + RightWord
Suffix	

Graph Construction - Features

to book a $[0.1]$\begin{tabular}{|l|}
\hline Trigram + Context

\hline \multicolumn{4}{l|}{| Left Context | |
| :--- | :--- |
| Right Context | |
| CenterWord | |
| Trigram - CenterWord | |
| | LeftWord + Right Context |
| Left Context + RightWord | |
| Suffix | |}

\hline
\end{tabular}

Graph Construction - Features

$\stackrel{\text { Point-wise Mutual Informatiole }}{ }$	Trigram + Context
	Left Context
	Right Context
	CenterWord
to book a $\left[\begin{array}{l}0.1 \\ 0.4 \\ \end{array}\right]$	Trigram - CenterWord
	LeftWord + Right Context
	Left Context + RightWord
	Suffix

Graph Construction - Features

to book a | Trigram + Context |
| :--- |
| Left Context |
| $\left.\begin{array}{c}0.1 \\ 0.4 \\ \vdots\end{array}\right]$ |
| Right Context |
| CenterWord |
| Trigram - CenterWord |
| LeftWord + Right Context |
| Left Context + RightWord |
| Suffix |

Similarity Function

Similarity Function

you unrar a

Similarity Function

Similarity Function

you unrar a
to book a

Similarity Function

to book a

$$
1-\cos \left(\left[\begin{array}{c}
0.1 \\
0.4 \\
\vdots
\end{array}\right],\left[\begin{array}{c}
0.2 \\
0.3 \\
\vdots
\end{array}\right]\right)=0.56
$$

Approach (I)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF

Approach (I)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
can you book a day room at hilton hawaiian village?
how to unrar a zipped file?
how to get a book agent?
how do you book a flight to multiple cities ?

Approach (I)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF

CRF

can you book a day room at hilton hawaiian village ?
how to unrar a zipped file?
how to get a book agent?
how do you book a flight to multiple cities ?

Approach (I)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
can you book a day room at hilton hawaiian village ?
how to unrar a zipped file ?
 how do you book a flight to multiple cities ?

Approach (II)

I. Train a CRF on labeled data
2. While not converged do:
2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)

Approach (II)

I. Train a CRF on labeled data
2. While not converged do:
2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)
can you book a day room at hilton hawaiian village ?
how do you book a flight to multiple cities ?

Approach (II)

I. Train a CRF on labeled data
2. While not converged do:
2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)

- you book a

Approach (II)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)

how do you book a flight to multiple cities ?

Approach (III)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation

Approach (III)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
you start a

Approach (III)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation

Approach (III)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation

Approach (III)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
you start a

If two n-grams are similar according to the graph then their output distributions should be similar

Approach (IV)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Approach (IV)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Can you unrar a zipped file?

Approach (IV)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Can you unrar a zipped file?

Approach (IV)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Approach (IV)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Approach (IV)

I. Train a CRF on labeled data
2. While not converged do:
2. I. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode

Approach (V)

I. Train a CRF on labeled data
2. While not converged do:
2.1. Posterior decode unlabeled data using CRF
2.2. Aggregate posteriors (token-to-type mapping)'
2.3. Graph propagation
2.4. Viterbi Decode
2.5. Retrain CRF on labeled \& automatically
labeled unlabeled data

Viterbi Decoding : Intuition

Space of all distributions realizable using a CRF

Viterbi Decoding : Intuition

Viterbi Decoding : Intuition

Viterbi Decoding : Intuition

$$
q(y \mid x)
$$

Viterbi Decoding : Intuition

Corpora

- Source Domain (labeled):Wall Street Journal (WSJ) section of the Penn Treebank.
- Target Domain:
- QuestionBank: 4000 labeled sentences
- Penn BioTreebank: I06I labeled sentences

Graph Construction: Question Bank

Graph Construction: Question Bank

Graph Construction: Question Bank

Graph Construction: Question Bank

Labels are not used during graph construction

Graph Construction: Question Bank

Graph Construction: Question Bank

Graph Construction: Bio

Baseline (Supervised)

Not the same as features used using graph construction

- Features: word identity, suffixes, prefixes \& special character detectors (dashes, digits, etc.).
- Achieves 97.I7\% accuracy on WSJ development set.

Results

	Questions	Bio
Baseline	83.8	86.2
Self-training	84.0	87.1
Semi-supervised CRF	$\mathbf{8 6 . 8}$	$\mathbf{8 7 . 6}$

Analysis

	Questions	Bio
percentage of unlabeled trigrams not connected to and any labeled trigram	12.4	46.8
average path length between an unlabeled trigram and its nearest labeled trigram	9.4	22.4

Analysis

Sparse Graph

Analysis

- Pros
- Inductive
- Produces a CRF (standard CRF inference infrastructure may be used)
- Issues
- Graph construction
- Graph is not integrated with CRF training

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

Text Categorization

- Sentiment Analysis
- Class Instance Acquisition

POS Tagging
MultiLingual POS Tagging
[Das \& Petrov,ACL 201I]
Semantic Parsing

- Conclusion \& Future Work

Motivation

- Supervised POS taggers for English have accuracies in the high 90's for most domains
- By comparison taggers in other languages are not as accurate
- Performance ranges from between 60-80\%

Motivation

- Supervised POS taggers for English have accuracies in the high 90's for most domains
- By comparison taggers in other languages are not as accurate
- Performance ranges from between 60-80\%

Cross-Lingual Projection

The food at Google is good.

Cross-Lingual Projection

Cross-Lingual Projection

Das Essen ist gut bei Google .

Cross-Lingual Projection

96\% Accuracy

Automatic alignments from translation data
(available for more than 50 languages)

Cross-Lingual Projection

Cross-Lingual Projection

NOUN
food

DET
The
Essen Das

VERB
is

ADJ

Google

Cross-Lingual Projection

ADJ good gut

bag of alignments

Google

Google

Cross-Lingual Projection

Cross-Lingual Projection

Cross-Lingual Projection Results

	Danish	Dutch	German	Greek	Italian	Portuguese	Spanish	Swedish	Average
Feature- HMM	69.1	65.1	81.3	71.8	68.1	78.4	80.2	70.1	73.0

Cross-Lingual Projection Results

	Danish	Dutch	German	Greek	Italian	Portuguese	Spanish	Swedish	Average
Feature- HMM	69.1	65.1	81.3	71.8	68.1	78.4	80.2	70.1	73.0
Direct Projection	$\mathbf{7 3 . 6}$	$\mathbf{7 7 . 0}$	$\mathbf{8 3 . 2}$	$\mathbf{7 9 . 3}$	$\mathbf{7 9 . 7}$	$\mathbf{8 2 . 6}$	$\mathbf{8 0 . 1}$	$\mathbf{7 4 . 7}$	$\mathbf{7 8 . 8}$

Graph Regularization

Results

	Danish	Dutch	German	Greek	Italian	Portugese	Spanish	Swedish	Average
Feature- HMM	69.1	65.1	81.3	71.8	68.1	78.4	80.2	70.1	73.0
Direct Projection	73.6	77.0	83.2	79.3	79.7	82.6	80.1	74.7	78.8

Results

	Danish	Dutch	German	Greek	Italian	Portugese	Spanish	Swedish	Average
Feature- HMM	69.1	65.1	81.3	71.8	68.1	78.4	80.2	70.1	73.0
Direct Projection	73.6	77.0	$\mathbf{8 3 . 2}$	79.3	79.7	82.6	80.1	74.7	78.8
Graph- based Projection	$\mathbf{8 3 . 2}$	$\mathbf{7 9 . 5}$	$\mathbf{8 2 . 8}$	$\mathbf{8 2 . 5}$	$\mathbf{8 6 . 8}$	$\mathbf{8 7 . 9}$	$\mathbf{8 4 . 2}$	$\mathbf{8 0 . 5}$	$\mathbf{8 3 . 4}$

Results

	Danish	Dutch	German	Greek	Italian	Portugese	Spanish	Swedish	Average
Feature- HMM	69.1	65.1	81.3	71.8	68.1	78.4	80.2	70.1	73.0
Direct Projection	73.6	77.0	$\mathbf{8 3 . 2}$	79.3	79.7	82.6	80.1	74.7	78.8
Graph- based Projection	$\mathbf{8 3 . 2}$	$\mathbf{7 9 . 5}$	82.8	$\mathbf{8 2 . 5}$	$\mathbf{8 6 . 8}$	$\mathbf{8 7 . 9}$	$\mathbf{8 4 . 2}$	$\mathbf{8 0 . 5}$	$\mathbf{8 3 . 4}$
Oracle	96.9	94.9	98.2	97.8	95.8	97.2	96.8	94.8	96.6

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications

Text Categorization
Sentiment Analysis

- Class Instance Acquisition

POS Tagging
MultiLingual POS Tagging
Semantic Parsing
[Das \& Smith, ACL 201I]

- Conclusion \& Future Work

Problem Description

- Extract shallow semantic structure: Frames and Roles

I want to go to Jeju Island on Sunday

Problem Description

- Extract shallow semantic structure: Frames and Roles

I want to go to Jeju Island on Sunday

Target
(Predicate)

Problem Description

- Extract shallow semantic structure: Frames and Roles

Problem Description

- Extract shallow semantic structure: Frames and Roles

Problem Description

- Extract shallow semantic structure: Frames and Roles

Problem Description

- Target identification
- Most approaches assume this is given
- Frame identification
- Argument identification

Frame Identification

Motivation

Frame Identification

Full Parsing

All Predicates

F-Measure

F-Measure

Unknown Predicates

Sparse label data

- Labeled data has only about 9,263 labeled predicates (targets)
- English on the other hand has a lot more potential predicates ($\sim 65,000$ in newswire)

Sparse label data

- Labeled data has only about 9,263 labeled predicates (targets)
- English on the other hand has a lot more potential predicates ($\sim 65,000$ in newswire)
- Construct a graph with potential predicates as vertices
- Expand the lexicon by using graph-based SSL

Graph Propagation (I)

Graph Propagation (II)

Graph Propagation (III)

Graph Propagation (IV)

Results on Unknown Predicates

Results on Unknown Predicates

F-Measure

Supervised
Self-Training
Graph-Based

Results on Unknown Predicates

Frame Identification

F-Measure

Full Parsing

Outline

- Motivation
- Graph Construction
- Inference Methods
- Scalability
- Applications
- Conclusion \& Future Work

When to use Graph-based SSL and which method?

- When input data itself is a graph
- or, when the data is expected to lie on a manifold
- Measure Propagation (MP)
- for probabilistic interpretation
- Quadratic Criteria (QC), MAD, MADDL
- when labels are not mutually exclusive
- Manifold Regularization
- for generalization to unseen data (induction)

Graph-based SSL: Summary

- Provide flexible representation
- for both IID and relational data
- Graph construction can be key
- Scalable: Node Reordering and MapReduce
- Can handle labeled as well as unlabeled data
- Can handle multi class, multi label settings
- Effective in practice

Open Challenges

- Use in structured prediction problems
- Constituency and dependency parsing
- Combining Inductive and Graph-based methods
- Joint optimization and parallel training [Altun et al., NIPS 2006]
- Scalable graph construction, especially with multi-modal data
- Extensions with other loss functions, sparsity, etc.
- Using side information

Acknowledgments

- National Science Foundation (NSF) IIS-0447972
- DARPA HROII07-I-0029, FA8750-09-C-0I79
- Google Research Award
- Dipanjan Das (Google), Ryan McDonald (Google), Fernando Pereira (Google), Slav Petrov (Google), Noah Smith (CMU)

References (I)

[1] A. Alexandrescu and K. Kirchhoff. Data-driven graph construction for semi- supervised graph-based learning in NLP. In NAACL HLT, 2007.
[2] Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learn- ing for structured variables. NIPS, 2006.
[3] R. Bekkerman, R. El-Yaniv, N. Tishby, and Y. Winter. Distributional word clusters vs. words for text categorization. J. Mach. Learn. Res., 3:1183-1208, 2003.
[4] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
[5] Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation and quadratic criterion. Semi-supervised learning, 2006.
[6] T. Berg-Kirkpatrick, A. Bouchard-Co^t e, J. DeNero, and D. Klein. Painless unsupervised learning with features. In HLTNAACL, 2010.
[7] J. Bilmes and A. Subramanya. Scaling up Machine Learning: Parallel and Distributed Approaches, chapter Parallel GraphBased Semi-Supervised Learning. 2011.
[8] S. Blair-goldensohn, T. Neylon, K. Hannan, G. A. Reis, R. Mcdonald, and J. Reynar. Building a sentiment summarizer for local service reviews. In In NLP in the Information Explosion Era, 2008.
[9] M. Cafarella, A. Halevy, D. Wang, E. Wu, and Y. Zhang. Webtables: exploring the power of tables on the web. VLDB, 2008.
[10] O. Chapelle, B. Schölkopf, A. Zien, et al. Semi-supervised learning. MIT press Cambridge, MA:, 2006.
[11] Y. Choi and C. Cardie. Adapting a polarity lexicon using integer linear program- ming for domain specific sentiment classification. In EMNLP, 2009.
[12] S. Daitch, J. Kelner, and D. Spielman. Fitting a graph to vector data. In ICML, 2009.
[13] D. Das and S. Petrov. Unsupervised part-of-speech tagging with bilingual graph- based projections. In ACL, 2011.
[14] D. Das, N. Schneider, D. Chen, and N. A. Smith. Probabilistic frame-semantic parsing. In NAACL-HLT, 2010.
[15] D. Das and N. Smith. Graph-based lexicon expansion with sparsity-inducing penalties. NAACL-HLT, 2012.
[16] D. Das and N. A. Smith. Semi-supervised frame-semantic parsing for unknown predicates. In ACL, 2011.
[17] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-theoretic metric learning. In ICML, 2007.
[18] O. Delalleau, Y. Bengio, and N. L. Roux. Efficient non-parametric function induction in semi-supervised learning. In AISTATS, 2005.
[19] P. Dhillon, P. Talukdar, and K. Crammer. Inference-driven metric learning for graph construction. Technical report, MS-CIS-10-18, University of Pennsylvania, 2010.
[20] S. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representations for text categorization. In CIKM, 1998.

References (II)

[21] J. Friedman, J. Bentley, and R. Finkel. An algorithm for finding best matches in logarithmic expected time. ACM Transaction on Mathematical Software, 3, 1977.
[22] J. Garcke and M. Griebel. Data mining with sparse grids using simplicial basis functions. In KDD, 2001.
[23] A. Goldberg and X. Zhu. Seeing stars when there aren't many stars: graph-based semi-supervised learning for sentiment categorization. In Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing, 2006.
[24] A. Goldberg, X. Zhu, and S. Wright. Dissimilarity in graph-based semi-supervised classification. AISTATS, 2007.
[25] M. Hu and B. Liu. Mining and summarizing customer reviews. In KDD, 2004.
[26] T. Jebara, J. Wang, and S. Chang. Graph construction and b-matching for semisupervised learning. In ICML, 2009.
[27] T. Joachims. Transductive inference for text classification using support vector machines. In ICML, 1999.
[28] T. Joachims. Transductive learning via spectral graph partitioning. In ICML, 2003.
[29] M. Karlen, J. Weston, A. Erkan, and R. Collobert. Large scale manifold transduction. In ICML, 2008.
[30] S.-M. Kim and E. Hovy. Determining the sentiment of opinions. In Proceedings of the 20th International conference on Computational Linguistics, 2004.
[31] F. Kschischang, B. Frey, and H. Loeliger. Factor graphs and the sum-product algorithm. Information Theory, IEEE Transactions on, 47(2):498-519, 2001
[32] K. Lerman, S. Blair-Goldensohn, and R. McDonald. Sentiment summarization: evaluating and learning user preferences. In EACL, 2009.
[33] D.Lewisetal.Reuters-21578.http://www.daviddlewis.com/resources/testcollections/reuters21578, 1987.
[34] J. Malkin, A. Subramanya, and J. Bilmes. On the semi-supervised learning of multi-layered perceptrons. In InterSpeech, 2009.
[35] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up?: sentiment classification using machine learning techniques. In EMNLP, 2002.
[36] D. Rao and D. Ravichandran. Semi-supervised polarity lexicon induction. In EACL, 2009.
[37] A. Subramanya and J. Bilmes. Soft-supervised learning for text classification. In EMNLP, 2008.
[38] A. Subramanya and J. Bilmes. Entropic graph regularization in non-parametric semi-supervised classification. NIPS, 2009.
[39] A. Subramanya and J. Bilmes. Semi-supervised learning with measure propagation. The Journal of Machine Learning Research, 2011.
[40] A. Subramanya, S. Petrov, and F. Pereira. Efficient graph-based semi-supervised learning of structured tagging models. In EMNLP, 2010.

References (III)

[41] P. Talukdar. Topics in graph construction for semi-supervised learning. Technical report, MS-CIS-09-13, University of Pennsylvania, 2009.
[42] P. Talukdar and K. Crammer. New regularized algorithms for transductive learning. ECML, 2009.
[43] P. Talukdar and F. Pereira. Experiments in graph-based semi-supervised learning methods for class-instance acquisition. In ACL, 2010.
[44] P. Talukdar, J. Reisinger, M. Pas sca, D. Ravichandran, R. Bhagat, and F. Pereira. Weakly-supervised acquisition of labeled class instances using graph random walks. In EMNLP, 2008.
[45] B. Van Durme and M. Pasca. Finding cars, goddesses and enzymes: Parametrizable acquisition of labeled instances for open-domain information extraction. In AAAI, 2008.
[46] L. Velikovich, S. Blair-Goldensohn, K. Hannan, and R. McDonald. The viability of web-derived polarity lexicons. In HLTNAACL, 2010.
[47] F. Wang and C. Zhang. Label propagation through linear neighborhoods. In ICML, 2006.
[48] J. Wang, T. Jebara, and S. Chang. Graph transduction via alternating minimization. In ICML, 2008.
[49] R. Wang and W. Cohen. Language-independent set expansion of named entities using the web. In ICDM, 2007.
[50] K. Weinberger and L. Saul. Distance metric learning for large margin nearest neighbor classification. The Journal of Machine Learning Research, 10:207-244, 2009.
[51] T. Wilson, J. Wiebe, and P. Hoffmann. Recognizing contextual polarity in phrase- level sentiment analysis. In HLT-EMNLP, 2005.
[52] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scho" lkopf. Learning with local and global consistency. NIPS, 2004.
[53] D. Zhou, J. Huang, and B. Schö Ikopf. Learning from labeled and un- labeled data on a directed graph. In ICML, 2005.
[54] D. Zhou, B. Schö lkopf, and T. Hofmann. Semi-supervised learning on directed graphs. In NIPS, 2005.
[55] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical report, CMU-CALD-02-107, Carnegie Mellon University, 2002.
[56] X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation. Technical report, Carnegie Mellon University, 2002.
[57] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In ICML, 2003.
[58] X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph- based methods for inductive and scalable semi-supervised learning. In ICML, 2005.

Thanks!

Web: http://graph-ssl.wikidot.com/

