
A Artificial Interactions

An artificial data generator was designed and im-
plemented to simulate doctor-system interactions,
with sentence templates defining the skeleton of
each entry in order to maintain high-quality sen-
tence structure and grammar. We used a context
free grammar to implement a template language
that can specify a virtually unlimited number of
templates and generate as many examples as de-
sired. Below we show a simplification of three sam-
ple rules from the grammar:

〈S〉 → maximum heart rate on 〈P 〉 today?

〈P 〉 → the day before 〈P 〉
〈P 〉 → the Monday after

A sample derivation using these rules is "maximum
heart rate on the Monday after today?".

The implementation allows for the definition
of any number of non-terminals, which we call
types, and any number of templates, which are the
possible right hand sides of the starting symbol S.
The doctor-system interactions can be categorized
into three types: questions, statements, and clicks,
where templates can be defined for each type, as
shown in Table 1. Given the set of types and tem-
plates, a virtually unlimited number of sentences
can be derived to form the artificial dataset. Since
the sentence generator chooses each template ran-
domly, the order of sentences in the output dataset
will be random. However, two important aspects
of the real interactions are context dependency and
coreference. To achieve context dependency, the
implementation allows for more complex combo
templates where multiple templates are forced to
come in a predefined order. It is also possible to
specify groups of templates, via tagging, and com-
bine groups rather than individual templates. Fur-
thermore, each NL sentence template is paired with
a LF template, and the two templates are instanti-
ated jointly, using a reference mechanism to condi-
tion the logical form generation on decisions made
while deriving the sentence.

Table 1 shows examples of how artificial sen-
tences and their logical forms are generated given
templates and types. Most types are defined us-
ing context free rules. There are however special
types, such as [clocktime] and [range()], which
are dynamically rewritten as a random time and
a random integer from a given range, as shown
in Examples 3 and 4, respectively. Note that most

Example types.
week_days→Monday | Tuesday | ... | Sunday
daily_intervals→morning | afternoon | evening | night
daily_intervals_logic→Morning | Afternoon | Evening | Night
any_event→heart rate | bolus | blood glucose level
any_event_logic→HeartRate | Bolus | BGL
Example 1: a statement, involving referencing
Let’s go to [week_days].→ DoSetDate([$1])
Possible derivations:
• Let’s go to Monday.→ DoSetDate(Monday)
• Let’s go to Tuesday.→ DoSetDate(Tuesday)

Example 2: a combo statement capturing temporal dependence
[[let’s/please/we can]/can we] turn the [any_event] off[$1:./?]

DoToggle(Off, [$2 : any_event_logic])
. . . and the [any_event] too.

DoToggle(Off, [$1 : any_event_logic])
Possible derivations:
• please turn the bolus off.→ DoToggle(Off,Bolus)

and the heart rate too.→ DoToggle(Off,HeartRate)
• can we turn the blood glucose level off?

→ DoToggle(Off,BGL)
and the bolus too.→ DoToggle(Off,Bolus)

Example 3: a click, involving the special type clocktime
Click(e) ∧ e.type == [any_event_logic]

∧ e.time == [clocktime]
A possible derivation:
• Click(e) ∧ e.type == Bolus ∧ e.time == 12:36 PM

Example 4: a question, involving the special type range
is there [a/any][valued_event]

[more/less] than [range(-500,500)]?
Answer(Any(d.value[$3 :>/<][$4]

∧d.type==[$2:valued_event_logic]))
One possible derivation:
• is there any heart rate less than 250?
Answer(Any(d.value < 250 ∧ d.type == HeartRate))

Table 1: Examples of generation of artificial samples.

examples use referencing, which is a mechanism
to allow for dynamic matching of terminals be-
tween the NL and LF derivations. In Example 1,
$1 in the logical form template refers to the first
type in the main sentence, which is [week_days].
This means that whatever value is substituted for
[week_days] should appear verbatim in place of
$1. In case a coordinated matching from a separate
list of possible options is required, such as in Ex-
ample 2, another type can be selected. In Example
2, [$2:any_event_logic] will be option i from the
type [any_event_logic] when option i is chosen in
the main sentence for the second template, which
is [any_event].

