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A Annotation Details

Data Selection. We select 400 reviews from the
ICLR 2018 dataset for the annotation study. To en-
sure the subset is representative of the full dataset,
samples are drawn based on two aspects: review
length and rating score.

Table 1 shows the distribution of reviews with
regard to their length in the full ICLR 2018 dataset
and the subset we sampled for annotation (AM-
PERE). As can be seen, the distribution over five
bins are consistent between AMPERE and full
dataset. A similar trend is observed on rating dis-
tribution in Table 2.

A subset of the reviews also have revision his-
tory, which can be used as a proxy for opinion
change and review quality in future work. To that
end, we manually set the ratio of revised reviews
vs. unrevised ones to 3:1 (c.f. 9:1 on the full
ICLR2018 dataset), to ensure that enough revised
reviews are being annotated. Notice that, in this
study, we only consider the initial version of a re-
view if any revision exists.

Length (0,200] (200,400] (400,600] (600,800] (800,∞)
AMPERE 14.8% 35.5% 25.3% 10.0% 14.6%
ICLR2018 17.6% 39.3% 23.8% 11.4% 7.9%

Table 1: Review length distribution of the full ICLR
2018 dataset and AMPERE, which consists of 400
sampled reviews.

Rating 1 2 3 4 5
AMPERE 3.0% 32.5% 43.8% 19.3% 1.5%
ICLR2018 2.6% 32.5% 42.4% 20.6% 1.8%

Table 2: Review rating distribution of AMPERE and
the full ICLR 2018 dataset.

Inter-annotator Agreement (IAA). To mea-
sure IAA, we first follow Stab and Gurevych

(2017) to calculate the unitized Krippendorf’s
αU (Krippendorff, 2004) for each review, and re-
port the average for each type.

We further consider agreement on the proposi-
tion level. However, since the segmented propo-
sition boundaries by two annotators do not always
match, we only consider the exact matched seg-
ments for Cohen’s κ. The agreement scores for
each type are listed in Table 3.

EVAL REQ FACT REF QUOT NON-A overall
αU 0.51 0.64 0.60 0.63 0.41 0.18 0.61
κ 0.60 0.68 0.64 0.88 0.59 0.27 0.64

Table 3: Inter-annotator agreement for all categories.

Sample Annotations. We show examples of an-
notated propositions in Table 4.

B Experiments

B.1 Data Preprocessing

For preprocessing, we tokenize and split re-
views into sentences with the Stanford CoreNLP
toolkit (Manning et al., 2014). We manually sub-
stitute special tokens for mathematical equations,
URLs, and citations or references. In total, 302
variables (<VAR>), 125 equations (<EQN>), 62
URL links (<URL>), and 97 citations (<CIT>) are
identified in 400 reviews.

B.2 Training Details

For all models except CNN, we conduct 5-fold
cross validation on training set to select hyperpa-
rameters.

CRF. We utilize the CRFSuite (Okazaki, 2007)
implementation and tune coefficients C1 and C2

for `1 and `2 regularizer. For segmentation task
the optimal setup is C1 = 0.0 and C2 = 1.0; for
joint prediction, C1 = 1.0 and C2 = 0.01 is used.
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The paper shows nice results on a number of small tasks.
With its poor exposition of the technique, it is difficult to recom-
mend this paper for publication.
I like the general approach of explicitly putting desired equivari-
ance in the convolutional networks.
The paper covers a very interesting topic and presents some
though-provoking ideas.
I’m not sure this strong language can be justified here.
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I would really like to see how the method performs without this
hack.
can the authors motivate this aspect better?
I suggest using [hidelinks] for hyperref.
More explanation needed here.
In addtion -> In addition
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Existing works on multi-task neural networks typically use
hand-tuned weights for weighing losses across different tasks
This work proposes a dynamic weight update scheme that up-
dates weights for different task losses during training time by
making use of the loss ratios of different tasks
In this paper, the authors trains a large number of MNIST clas-
sifier networks with differing attributes (batch-size, activation
function, no. layers etc.)
This paper is based on the theory of group equivariant CNNs
(G-CNNs), proposed by Cohen and Welling ICML’16.
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[1] Burnetas, A. N., & Katehakis, M. N. (1997). Optimal adap-
tive policies for Markov decision processes. Mathematics of Op-
erations Research, 22(1) , 222-255
VARIANCE-BASED GRADIENT COMPRESSION FOR EF-
FICIENT DISTRIBUTED DEEP LEARNING
see MuseGAN (Dong et al), MidiNet (Yang et al), etc
e.g. Weakly-supervised Disentangling with Recurrent Transfor-
mations for 3D View Synthesis, Yang et al.
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The author wrote “where r is lower bound of feature norm”
“In a probabilistic context-free grammar (PCFG), all production
rules are independent”
Quoting from its abstract: “Using commodity hardware, our im-
plementation achieves ∼ 90% scaling efficiency when moving
from 8 to 256 GPUs.”
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Below, I give some examples
are all the test images resized before hand?
How was this chosen?

Table 4: Sample annotated propositions.

BiLSTM-CRF. We experiment with implemen-
tation by Reimers and Gurevych (2017) with an
extra ELMo embedding. Based on the cross
validation for both segmentation and joint learn-
ing, the optimal network architecture selected has
two layers with 100 dimensional hidden states
each, with dropout probabilities of 0.5 for both
layers. The word embedding pre-trained by
Komninos and Manandhar (2016) is chosen, as
it outperforms GloVe embeddings (Pennington
et al., 2014) trained either on Google News or
Wikipedia.

SVM. We utilize SAGA (Defazio et al., 2014)
implemented in the Lightning library (Blondel and
Pedregosa, 2016) to learn a linear SVM optimized
with Coordinate Descent (Wright, 2015). The co-
efficient for a group Lasso regularizer (Yuan and
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Figure 1: Word count in reviews by venue and rat-
ing. The word counts are significantly different be-
tween all venue pairs except UAI vs. ICLR and ACL
vs. NeurIPS (p < 10−6, unpaired t-test).

Lin, 2006) is set to 0.001 by cross validation.

CNN. We implement the CNN-non-static vari-
ant as described in Kim (2014), with the follow-
ing configuration: filter window sizes of {3,4,5},
with 128 feature maps each. Dropout probability
is 0.5. 300 dimensional word embeddings are ini-
tiated with the pre-trained word2vec on 100 billion
Google News (Mikolov et al., 2013).

C Further Analysis

Review Length by Venue and Rating. We
compare review length of different venues in the
top row of Figure 1. Unpaired t-test shows that
ACL and NeurIPS have significantly longer re-
views than UAI and ICLR (p < 10−6), which is
consistent with the trend for proposition counts,
as described in Figure 2 in the paper.

We further group reviews by their ratings and
display the average length per category in Figure
1. Again, we observe similar trends for the dis-
tribution of proposition count, where reviews with
extreme ratings tend to be shorter.

Proposition Structure. We calculate the propo-
sition type transition matrix as a proxy to uncover
the local argumentative structure information. As
is shown in Figure 2, propositions are more likely
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Figure 2: Proposition type transition matrix in different
venues.

to be followed by propositions of the same type,
while for NeurIPS the transition from reference to
non-argument is much more prominent than other
venues. A closer look at the dataset indicates that
this might be because many formatted headers are
mistakenly predicted as reference, e.g. “For de-
tailed reviewing guidelines, see <URL>”. They
are usually followed by text such as “Comments to
the author”, which is predicted correctly as NON-
ARG.
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