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A Data Processing

Date and Number Resolution We replace in-
stances of spelled-out multi-digit numbers in the
original data (e.g., flight two three five) with a nu-
merical representation (e.g., flight 235). We re-
solve expressions containing references to dates
using UWTime (Lee et al., 2014). Interactions
in ATIS are annotated with the date they took
place, which we use as document time. We use
the newswire annotator in UWTime to annotate
each utterance in ATIS with date tags, and add one
week to any predicted dates that occur before the
document date. This heuristic follows the assump-
tion that users always ask for information in the fu-
ture. UWTime is able to predict dates contained in
the gold queries in the training data with approxi-
mately 70% accuracy. Without using interaction
dates and resolving date expressions, the model
would not be able to generate correct dates, unless
through overfitting to the training set. Previous
work on ATIS addresses the problem of resolv-
ing relative date expressions by modifying the out-
put queries. For example, Zettlemoyer and Collins
(2009) add logical constants such as tomorrow to
the lambda-calculus lexicon. To the best of our
knowledge, no previous context-dependent work
on ATIS uses interaction dates to recover the ref-
erents of date expressions.

Entity Anonymization We replace known en-
tities in user utterances and SQL queries with
anonymized tokens. Using the database, we gen-
erate a set of known entities and their natural lan-
guage and SQL forms, for example the set of city
names from the city table. When anonymizing
an example, we first identify entities that occur in
the input sequence, and replace each with a unique
anonymized token, using the same token for enti-
ties that occur multiple times. We also identify
numerical constants, which include flight numbers

and times, as entities in the input sequence. This
process gives us a set of entities in the input se-
quence and their corresponding anonymized to-
kens. During training, we replace any tokens in the
gold SQL query that are in this set with the appro-
priate anonymized token. Entity anonymization is
separate of entity scoring, described in Section 6,
which computes scores for generating anonymized
tokens independently of generating raw SQL to-
kens. When entity scoring is ablated in our exper-
iments, entity anonymization is still applied as a
pre-processing technique, but anonymized tokens
with indices are used as regular members of the
input and output vocabularies.

Post-processing After generating a query but
before evaluating it against the SQL database or
comparing with the gold labels, we post-process
it. We de-anonymize all generated anonymized to-
kens using the anonymization set extracted from
the input sequences, and correct mismatched
parentheses by adding closing parenthesis at the
end of the query.

B Copying Segments

Segment Extraction from Previous Queries
To construct S(ȳ), we deterministically extract
subtrees of the SQL parse tree from ȳ, as well as
SELECT statements containing special modifiers
like MIN. We use the sqlparse package to con-
struct a tree, and recursively traverse its subtrees.
We consider all subtrees of a WHERE clause. We
separate children of conjunctions into distinct sub-
trees. When evaluating with predicted queries, we
extract segments from the most recent prediction
that has correct syntax and follows the database
structure.

Alignment of Segments with Gold Queries
During training, we align the set of extracted seg-
ments S(ȳ) with the gold query to construct a new



query that contains references to extracted seg-
ments. We first extract known entities, e.g. city
names, from the current utterance x̄i, using the en-
tity set described above. We greedily substitute the
longest extracted segments in S(ȳ) first. If seg-
ment s̄ is a subsequence of the gold query ȳi, we
replace that subsequence with a reference to it. We
do not replace the subsequence if it contains one
of the entities extracted from the input sequence;
entities mentioned in the current utterance should
be explicitly generated in the current prediction,
as these are most likely not references to previous
constraints.

C Implementation Details

Learning We use the ADAM optimizer (Kingma
and Ba, 2014) with an initial global learning rate
of 0.001. The batch size B = 16. We use patience
as a stopping mechanism, with an initial patience
of 10 epochs. We compute loss and token-level
accuracy on a held-out validation set after each
epoch. This set includes 5% of the training data,
and when using our split of the dataset, does not
contain scenarios that are present in the remain-
ing 95% of the data. We use the same validation
set across all of our experiments. After an epoch,
if token-level loss on the validation set increases
since the previous epoch, the global learning rate
is multiplied by 0.8. When token-level accuracy
on the validation set increases to a maximum value
during training, we multiply the current patience
by 1.01. During training, we apply dropout with
probability 0.5 after the first decoder LSTM layer,
and after computing mk at each decoding step.
The model parameters used to evaluate on the de-
velopment and test sets are those that yielded the
highest string-level validation accuracy.

During training, when multiple gold labels are
present, we use the shortest. Loss is not computed
for utterance-query pairs if, after pre-processing
and query segment alignment, the gold label con-
tains more than 200 tokens. However, if using the
turn-level encoder, this pair’s input sequence is en-
coded and the turn-level state is updated. During
evaluation on the development and test sets, we
limit generation to 300 tokens.

If not using the turn-level encoder, we delimit
the previous and current utterances with a spe-
cial delimiter token when encoding the inputs
(Section 4.2). The corresponding encoder hidden
states of the delimiters are not used during atten-

Split Model Strict Denotation

Original FULL 68.4±0.2

– preprocess. 67.1±1.0 (-1.3)

Ours FULL 62.5±0.9

– preprocess. 53.0±8.5 (-9.5)

Table 4: Strict table accuracy results using our model
with and without pre-processing on the development
sets of the original data split and our data split.

Model Query Denotation
Relaxed Strict

FULL-GOLD 42.1±0.8 66.6±0.7 66.1±0.7

– turn-level encoder 42.5±1.7 66.3±1.7 65.7±1.9

– batch re-weighting 41.1±0.7 65.5±0.3 64.8±0.6

– input pos. embs. 38.0±0.4 61.4±1.1 60.5±1.1

– anon. scoring 40.8±0.7 64.7±1.4 63.9±1.3

– pre-processing 35.3±6.9 57.9±8.4 57.4±8.2

Table 5: Ablations on FULL-GOLD, showing perfor-
mance on the development set averaged over all utter-
ances. Gold queries are provided for previous query
segment extraction. In each model, h = 3. We show
average and standard deviation over five trials for each
model.

tion.

Parameters We use word embeddings of size
400. The word embeddings are not pre-trained.
Utterance age embeddings are of size 50. Query
segment age embeddings are of size 64. For all
models that use query segment copying, g = 4.
All LSTMs have a hidden size of 800. The sizes
of the learned matrices are: WA ∈ R850×800,
Wm ∈ R1650×800, Wo ∈ R800×|V o|, bo

w ∈
R|V o|, and W

S ∈ R800×1600. Unless otherwise
noted, the initial hidden state and cell memory of
all LSTMs are zero-vectors. All parameters are
initialized randomly from a uniform distribution
U [−0.1, 0.1].

D Results

D.1 Overfitting in Original Data Split

We assess overfitting on the training set of the
original split of the data by measuring how per-
formance changes when data pre-processing is re-
moved. Table 4 shows that removing data pre-
processing lowers the performance of FULL by
around 9% when using our data split. However,
on the original split of the data, performance drops
by only 1.3%. This relatively high performance is
only possible due to learned biases within the sce-
narios.

D.2 Ablations using Gold Previous Queries

Table 5 shows results on ablating components
from FULL when extracting segments from pre-
vious gold queries.
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Figure 6: Distribution of referent ages over sampled
utterances in the development set.

E Analysis

E.1 Data Analysis

The two most common contextual phenomena in
ATIS are ellipsis and referring expressions. El-
lipsis refers to utterances that omit relevant infor-
mation mentioned in the past. For example, ȳ2 in
Figure 2 contains flight endpoint constraints that
are not present in x̄2. To recover these constraints,
the model must resolve an implicit reference to
x̄1. Referring expressions explicitly refer to ear-
lier constraints or system responses. In the exam-
ple utterances, the phrase which ones in x̄3 refers
to the table returned by executing ȳ2.

An analysis of twenty development-set inter-
actions shows that utterances after the first turn
contain on average 1.85 omitted constraints, and
60.1% of utterances after the first turn omit at least
one constraint. Figure 6 shows the distribution of
referent ages over all utterances in the twenty ana-
lyzed interactions from the development set, con-
sidering three major types of references: ellipsis
on constraints, ellipsis on the attributes targeted by
the user request (e.g., if a user omits the target at-
tribute in the current utterance, but it is clear from
context), and referring expressions (explicit men-
tions of previous constraints). 9% of utterances af-
ter the first utterance omit the target attribute; 11%
contain a referring expression to previous results
or constraints.

E.2 Attention Analysis

Figures 7, 8, and 9 demonstrate the robustness
of the full approach when attending over multiple
previous utterances. Each figure shows attention
while processing the same example, which is the
third utterance in an interaction from the develop-
ment set. This interaction exemplifies a user focus
state change. To process the third utterance, show
flights, correctly, the model must be able to re-
cover constraints mentioned in the first utterance,

although the user briefly changes focus in the sec-
ond utterance. In each figure, the query is shown
on the lefthand side, and the utterances are at the
bottom. The opacity of each cell represents the at-
tention probability for each token during each gen-
eration step. Darker lines in the figure separate the
three utterances.

Figure 7 shows the attention computed by FULL

when provided with gold query segments. The
decoder attends over entities in the previous ut-
terance, including the flight endpoints and date,
when generating the query. Figure 8 shows the at-
tention computed by FULL-0 when provided with
gold query segments. This model does not have
explicit access to the constraints mentioned in the
first utterance. It is unable to recover these con-
straints, and instead makes up constraints, such as
endpoints and a date, while also making a seman-
tic mistake, city.city name = 1200. This
demonstrates the robustness provided by the at-
tention mechanism in the full model. For com-
parison, Figure 9 shows the attention computed
by S2S+ANON on the same example. Like FULL,
this model attends over entities in the first utter-
ance, including flight endpoints and the date. Both
FULL and S2S+ANON were able to recover the
correct query.

Figures 10, 11, and 12 demonstrate how the
ability to copy query segments is critical to our
model’s performance. FULL and FULL-0 are
able to recover the correct query. In both cases,
SEGMENT 9, which is extracted from the previ-
ous query, contains the flight endpoint constraints
(from the first utterance), as well as a constraint
that the flight be the shortest one available (from
the second utterance). S2S+ANON is unable to re-
cover the minimum-time constraint, even though
it has the ability to attend over the relevant to-
kens in the second utterance. The ability of FULL-
0 to recover this constraint without attending on
previous utterances demonstrates the benefit that
copying previous segments provides. These exam-
ples also show that when copying query segments,
fewer decoding steps are required.

E.3 Contextual Analysis

We construct several example interactions target-
ing the contextual phenomena discussed in Sec-
tion 9, and test FULL against them.



x̄1: show me flights from seattle to denver after
6am
x̄2: leaving after 7am
x̄3: leaving after 8am
x̄4: leaving before 9am
x̄5: leaving after 10am
x̄6: leaving from san francisco

This example shows ellipsis of both constraints
(flight endpoints) and target attribute (flights)
while modifying existing constraints. FULL is able
to predict correct queries for all new utterances as
the user continues to change constraints and elided
values increase in age. Whether ȳ6 includes a time
constraint or not is ambiguous; FULL generates a
query to search for all flights from San Francisco
to Denver regardless of time.

x̄1: show me flights from seattle to denver
x̄2: leaving after 7am
x̄3: stopping in san francisco
x̄4: on american airlines
x̄5: which is the cheapest
x̄6: with breakfast

This example shows ellipsis of both constraints
and target attribute while adding constraints.
FULL is able to predict correct queries for all ut-
terances in this interaction.
x̄1: show me flights from seattle to denver after
6am
x̄2: how much does it cost
x̄3: what meal is offered
x̄4: which airlines are available
x̄5: what type of airplane does it use
x̄6: what ground transportation is available

This example shows ellipsis on constraints (end-
points and time) while changing the target at-
tribute. Additionally, it demonstrates change in fo-
cus while the user switches from asking for flights
to asking about airlines. While ambiguous, the fi-
nal utterance x̄6 is interpreted as finding ground
transportation in Denver. FULL is able to recover
correct queries for all utterances in this interaction.

x̄1: show me flights from seattle to denver after
6am
x̄2: what ground transportation is available in
denver
x̄3: i want to fly on delta

This example shows ellipsis when user focus
changes, temporarily rendering the origin city and
time constraints irrelevant. FULL predicts queries

for the first two utterances correctly, but fails to
generate the correct origin city constraint in the
third prediction. Instead, it generates a constraint
that Denver is the origin city. When x̄2 is removed
from the interaction, both predictions are correct.
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;
)
)
)
)
)

DAY NUMBER#0
=

date day.day number
AND

MONTH NUMBER#0
=

date day.month number
AND

YEAR#0
=

date day.year
WHERE

date day
FROM

date day.day name
SELECT

(
IN

days.day name
WHERE
days
FROM

days.days code
SELECT

(
IN

flight.flight days
AND

)
)

CITY NAME#0
=

city.city name
WHERE
city
FROM

city.city code
SELECT

(
IN

airport service.city code
WHERE

airport service
FROM

airport service.airport code
SELECT

(
IN

flight.to airport
(

AND
)
)

CITY NAME#1
=

city.city name
WHERE
city
FROM

city.city code
SELECT

(
IN

airport service.city code
WHERE

airport service
FROM

airport service.airport code
SELECT

(
IN

flight.from airport
(

WHERE
flight

FROM
flight.flight id

DISTINCT
SELECT

(

Figure 7: Attention computed by FULL after a user state focus change. Compare to Figures 8 and 9.
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7
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date day.year
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date day
FROM

date day.day name
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(
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days.day name
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FROM
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SELECT
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IN

flight.flight days
AND
)
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=
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FROM
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WHERE
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IN

flight.from airport
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WHERE
flight

FROM
flight.flight id

DISTINCT
SELECT

(

Figure 8: Attention computed by FULL-0 when generating a query for an utterance after a user state focus change.
The model does not have explicit access to flight endpoint or date constraints, and is unable to generate the correct
query. Figure 7 shows FULL on this example; Figure 9 shows S2S-ANON.
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(
IN

flight.flight days
AND
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(
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(
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DISTINCT
SELECT

(

Figure 9: Attention computed by S2S+ANON after a user state focus change. Compare to Figures 7 and 8.
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;
)
)
)
)
)

SEGMENT 9
(

WHERE
flight

FROM
flight.flight id

SELECT
(

IN
flight fare.flight id

WHERE
flight fare

FROM
flight fare.fare id

SELECT
(

IN
fare.fare id

AND
NOT NULL

IS
fare.round trip cost

(
WHERE
fare
FROM

fare.fare id
DISTINCT

SELECT
(

Figure 10: Attention computed by FULL, demonstrating copying of query segments. Figure 11 shows FULL-0 on
this example; Figure 12 shows S2S-ANON.
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(
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FROM
flight.flight id

SELECT
(
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WHERE
flight fare
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Figure 11: Attention computed by FULL-0 that makes use of query segments to recover constraints it does not
otherwise have explicit access to. Figure 10 shows FULL on this example; Figure 12 shows S2S-ANON.
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CITY NAME#1
=

city.city name
WHERE
city
FROM

city.city code
SELECT

(
IN

airport service.city code
WHERE

airport service
FROM

airport service.airport code
SELECT

(
IN

flight.to airport
AND

)
)

CITY NAME#0
=

city.city name
WHERE
city
FROM
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SELECT

(
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WHERE

airport service
FROM
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SELECT

(
IN

flight.from airport
(

WHERE
flight

FROM
flight.flight id

SELECT
(

IN
flight fare.flight id

WHERE
flight fare

FROM
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SELECT
(

IN
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IS
fare.round trip cost

(
WHERE
fare
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fare.fare id
DISTINCT

SELECT
(

Figure 12: Attention computed by S2S-ANON, demonstrating a failure in recovering constraints. Figure 10 shows
FULL on this example; Figure 11 shows FULL-0.


