Appendices

A Submodularity of f and c

Remember that f and c are defined on \mathcal{P} as

$$
f(X):=g\left(V_{X}\right), \quad c(X):=\sum_{v \in V_{X}} \ell_{v}
$$

where $V_{X}:=\bigcup_{p \in X} V_{p} ; V_{p} \subseteq V$ is a vertex subset that is included in path $p \in \mathcal{P}$.
We first see that f is a submodular function. Let $X \subseteq Y$ and $p \notin Y$, then f satisfies the diminishing return property as follows:

$$
\begin{aligned}
f(p \mid X) & =g\left(V_{p} \mid V_{X}\right) \\
& \geq g\left(V_{p} \mid V_{Y}\right) \\
& =f\left(p \mid V_{Y}\right),
\end{aligned}
$$

where the inequality comes from $V_{X} \subseteq V_{Y}$ and the submodularity of g; it may occur that V_{p} is included in V_{Y} (and V_{X}), but in such a case we have $f(p \mid Y)=0$ (and $f(p \mid X)=0$), which does not affect the conclusion. The monotonicity of f is confirmed readily from the monotonicity of g, and $f(\emptyset)=0$ comes from $g(\emptyset)=0$.
We then see that c is a submodular function. For $X \subseteq Y$ and $p \notin Y$, the diminishing return property holds as follows:

$$
\begin{aligned}
c(p \mid X) & =\sum_{v \in V_{p} \backslash V_{X}} \ell_{v} \\
& \geq \sum_{v \in V_{p} \backslash V_{Y}} \ell_{v} \\
& =c(p \mid Y)
\end{aligned}
$$

where we use $V_{p} \backslash V_{Y} \subseteq V_{p} \backslash V_{X}$ and $\ell_{v} \geq 0(v \in$ V). Similar to the above, $V_{p} \subseteq V_{Y}$ (and $V_{p} \subseteq V_{X}$) does not affect the conclusion. The monotonicity of c and $c(\emptyset)=0$ are also easily obtained.

B Proof of Theorem 1

As is customary in the analysis of greedy algorithms for submodular knapsack problems (Khuller et al., 1999; Sviridenko, 2004), we introduce the following indexing of selected elements in \mathcal{P}. Let $X^{*} \subseteq \mathcal{P}$ be an optimal solution and t be the number of iterations executed by the algorithm until the first time at which $p \in X^{*}$ is considered but not added to the output solution, X, because of the violation of the knapsack constraint. We denote the number of elements added in the first t steps by d. If $c(X+p)>L$ and $p \notin X^{*}$ occur in the
loops of the algorithm, then such p does not affect the analysis of approximation ratio. Therefore, we suppose that such p is removed from \mathcal{P} in advance. Considering the above, we can define a sequence p_{1}, p_{2}, \ldots so that p_{i} is the i-th element added to X for $i=1, \ldots, d$ and p_{d+1} is the first element in X^{*} that is considered by the algorithm but not added to X due to the violation of the knapsack constraint. We define $X_{i}:=\left\{p_{1}, \ldots, p_{i}\right\}$ for $i=1, \ldots, d+1$ and $X_{0}:=\emptyset$.

For given subset $Q=\left\{q_{1}, \ldots, q_{K}\right\} \subseteq \mathcal{P}$, path $\hat{q} \in Q$ is said to be maximal in Q if no $q \in Q$ satisfies $V_{\hat{q}} \subsetneq V_{q}$. A set of paths, $\hat{Q} \subseteq Q$, is a maximal path cover (MPC) of Q if all $\hat{q} \in \hat{Q}$ are maximal in Q and $V_{\hat{Q}}=V_{Q}$ holds. Since Q is defined on tree \mathbf{T}, any $Q \subseteq \mathcal{P}$ has a unique MPC $\hat{Q} \subseteq \mathcal{P}$. Furthermore, for any $q \in Q$, there exists at least one $\hat{q} \in \hat{Q}$ satisfying $V_{q} \subseteq V_{\hat{q}}$.
Lemma 1. Given any $Z, Z^{*} \subseteq \mathcal{P}$, we define $\left\{q_{1}, \ldots, q_{K}\right\}:=Z^{*}-Z, Z_{j}:=Z+\left\{q_{1}, \ldots, q_{j}\right\}$ $(j \in[K])$ and $Z_{0}:=Z$. Then the MPC $\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\}$ of $Z^{*}-Z$ satisfies

$$
\sum_{j=1}^{K} f\left(q_{j} \mid Z_{j-1}\right)=\sum_{j=1}^{M} f\left(\hat{q}_{j} \mid \hat{Z}_{j-1}\right)
$$

where $\hat{Z}_{j}:=Z+\left\{\hat{q}_{1}, \ldots, \hat{q}_{j}\right\}$ and $\hat{Z}_{0}:=Z$.

Proof. Since $\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\}$ is the MPC of $Z^{*}-$ Z, for any $q \in Z^{*}-Z$, there exists a $\hat{q} \in$ $\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\}$ satisfying $V_{q} \subseteq V_{\hat{q}}$. Therefore, $Z^{*}-Z$ can be divided into M subsets $\left\{q_{1}^{i}, \ldots, q_{k_{i}}^{i}\right\}$ ($i \in[M]$) satisfying

$$
\begin{equation*}
V_{q_{1}^{i}} \subseteq \cdots \subseteq V_{q_{k_{i}}^{i}}=V_{\hat{q}_{i}} . \tag{A1}
\end{equation*}
$$

Namely, $q_{1}^{i}, \ldots, q_{k_{i}}^{i}$ are subpaths of \hat{q}_{i}; if some $q \in Q$ is included in multiple maximal paths, we arbitrarily choose one such maximal path to which q belongs. Thus all elements in $Z^{*}-Z$ are indexed as follows:

$$
\begin{aligned}
& Z^{*}-Z \\
& =\left\{q_{1}^{1}, \ldots, q_{k_{1}}^{1}, q_{1}^{2}, \ldots, q_{k_{2}}^{2}, \ldots, q_{1}^{M}, \ldots, q_{k_{M}}^{M}\right\} .
\end{aligned}
$$

We define $q_{j: k}^{i}:=\left\{q_{j}^{i}, q_{j+1}^{i}, \ldots, q_{k}^{i}\right\}$ if $j \leq k$ and $q_{j: k}^{i}:=\emptyset$ otherwise. For any maximal path $\hat{q}_{i} \in$ $\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\}$ and any \hat{Z} such that $Z \subseteq \hat{Z} \subseteq Z^{*}$,
we have

$$
\begin{aligned}
& f\left(\hat{q}_{i} \mid \hat{Z}\right) \\
& =g\left(V_{\hat{Z}} \cup V_{\hat{q}_{i}}\right)-g\left(V_{\hat{Z}}\right) \\
& =g\left(V_{\hat{Z}} \cup V_{q_{k_{i}}^{i}}\right)-g\left(V_{\hat{Z}} \cup V_{q_{k_{i}-1}^{i}}\right) \\
& +g\left(V_{\hat{Z}} \cup V_{q_{k_{i}-1}^{i}}\right)-g\left(V_{\hat{Z}} \cup V_{q_{k_{i}-2}^{i}}\right) \\
& +\cdots \\
& +g\left(V_{\hat{Z}} \cup V_{q_{1}^{i}}\right)-g\left(V_{\hat{Z}}\right) \\
& =g\left(V_{\hat{Z}} \cup V_{q_{1: k_{i}}^{i}}\right)-g\left(V_{\hat{Z}} \cup V_{q_{1: k_{i}-1}}\right) \\
& +g\left(V_{\hat{Z}} \cup V_{q_{1: k}^{i}-1}^{i}\right)-g\left(V_{\hat{Z}} \cup V_{q_{1: k_{i}-2}^{i}}\right) \\
& +\cdots \\
& +g\left(V_{\hat{Z}} \cup V_{q_{1}^{i}}\right)-g\left(V_{\hat{Z}}\right) \\
& =f\left(q_{k_{i}}^{i} \mid \hat{Z}+q_{1: k_{i}-1}^{i}\right)+f\left(q_{k_{i}-1}^{i} \mid \hat{Z}+q_{1: k_{i}-2}^{i}\right) \\
& +\cdots+f\left(q_{1}^{i} \mid \hat{Z}\right),
\end{aligned}
$$

where the third equality comes from (A1). Note that the value of $\sum_{j \in[K]} f\left(q_{j} \mid Z_{j-1}\right)=f\left(Z^{*}\right)-$ $f(Z)$ is independent of the order of elements in $Z^{*}-Z$. Thus, rearranging the order of summation yields

$$
\begin{aligned}
\sum_{j=1}^{K} f\left(q_{j} \mid Z_{j-1}\right) & =\sum_{i=1}^{M} \sum_{j=1}^{k_{i}} f\left(q_{j}^{i} \mid \hat{Z}_{i-1}+q_{1: j-1}^{i}\right) \\
& =\sum_{j=1}^{M} f\left(\hat{q}_{j} \mid \hat{Z}_{j-1}\right)
\end{aligned}
$$

For an optimal subtree $X^{*} \subseteq \mathcal{P}$ in \mathbf{T}, we let X_{i}^{*} denote a subtree of X^{*} that is included in the i-th sentence tree $T_{i}(i \in[N])$. We define λ_{i} as the number of leaves of T_{i}. Note that, if $Q_{i} \subseteq \mathcal{P}$ is the MPC of X_{i}^{*}, then we have $\left|Q_{i}\right| \leq \lambda_{i}$ (i.e., the number of paths in MPC is bounded by the number of leaves). Let $\lambda:=\max _{i \in[N]} \lambda_{i}$. Then we have the following lemma.

Lemma 2. For $i=1, \ldots, d+1$, we have

$$
\begin{aligned}
& f\left(X_{i}\right)-f\left(X_{i-1}\right) \\
& \geq \frac{c\left(p_{i} \mid X_{i-1}\right)}{\lambda L}\left(f\left(X^{*}\right)-f\left(X_{i-1}\right)\right) .
\end{aligned}
$$

Proof. Let $\left\{q_{1}, \ldots, q_{K}\right\}:=X^{*}-X_{i-1}, Z_{j}:=$ $X_{i-1}+\left\{q_{1}, \ldots, q_{j}\right\}$ and $Z_{0}:=X_{i-1}$. From Lemma 1 with $Z^{*}=X^{*}$ and $Z=X_{i-1}$, MPC
$\hat{Q}=\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\}$ of $X^{*}-X_{i-1}$ satisfies

$$
\begin{aligned}
f\left(X^{*}\right)-f\left(X_{i-1}\right) & =\sum_{j=1}^{K} f\left(q_{j} \mid Z_{j-1}\right) \\
& =\sum_{j=1}^{M} f\left(\hat{q}_{j} \mid \hat{Z}_{j-1}\right),
\end{aligned}
$$

where $\hat{Z}_{j}:=X_{i-1}+\left\{\hat{q}_{1}, \ldots, \hat{q}_{j}\right\}(j \in[M])$ and $\hat{Z}_{0}=X_{i-1}$. By using submodularity, we obtain

$$
\begin{aligned}
f\left(X^{*}\right)-f\left(X_{i-1}\right) & =\sum_{j=1}^{M} f\left(\hat{q}_{j} \mid \hat{Z}_{j-1}\right) \\
& \leq \sum_{j=1}^{M} f\left(\hat{q}_{j} \mid \hat{Z}_{0}\right) \\
& =\sum_{j=1}^{M} f\left(\hat{q}_{j} \mid X_{i-1}\right) .
\end{aligned}
$$

Since $p_{i}=\operatorname{argmax}_{p \notin X_{i-1}} \frac{f\left(p \mid X_{i-1}\right)}{c\left(p \mid X_{i-1}\right)}$ holds, we have $\frac{f\left(p_{i} \mid X_{i-1}\right)}{c\left(p_{i} \mid X_{i-1}\right)} \geq \frac{f\left(\hat{q}_{i} \mid X_{i-1}\right)}{c\left(\hat{q}_{j} \mid X_{i-1}\right)}$ for all $j=1, \ldots, M$. Hence we obtain

$$
\begin{align*}
& c\left(p_{i} \mid X_{i-1}\right)\left(f\left(X^{*}\right)-f\left(X_{i-1}\right)\right) \tag{A2}\\
& \leq c\left(p_{i} \mid X_{i-1}\right) \sum_{j=1}^{M} f\left(\hat{q}_{j} \mid X_{i-1}\right) \\
& \leq f\left(p_{i} \mid X_{i-1}\right) \sum_{j=1}^{M} c\left(\hat{q}_{j} \mid X_{i-1}\right) .
\end{align*}
$$

We now bound $\sum_{j=1}^{M} c\left(\hat{q}_{j} \mid X_{i-1}\right)$ from above as follows. By using submodularity, we obtain

$$
\begin{equation*}
\sum_{j=1}^{M} c\left(\hat{q}_{j} \mid X_{i-1}\right) \leq \sum_{j=1}^{M} c\left(\hat{q}_{j}\right) . \tag{A3}
\end{equation*}
$$

Note that $\hat{Q}=\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\}$ can be partitioned into N subsets Q_{1}, \ldots, Q_{N} of maximal paths so that all $q \in Q_{i}$ include r_{i}; we have $V_{Q_{i}} \cap V_{Q_{j}}=\emptyset$ for $i \neq j$ since each $Q_{i}(i \in[N])$ is defined on the i-th sentence tree, T_{i}. Using these definitions, we obtain

$$
\sum_{j=1}^{M} c\left(\hat{q}_{j}\right)=\sum_{i \in[N]} \sum_{q \in Q_{i}} c(q)=\sum_{i \in[N]} \sum_{q \in Q_{i}} \sum_{v \in V_{q}} \ell_{v} .
$$

Since we have $\left|Q_{i}\right| \leq \lambda_{i}$, each $v \in V_{Q_{i}}$ is included in at most λ_{i} maximal paths in Q_{i}. Thus we have

$$
\sum_{q \in Q_{i}} \sum_{v \in V_{q}} \ell_{v} \leq \lambda_{i} \sum_{v \in V_{Q_{i}}} \ell_{v} \leq \lambda \sum_{v \in V_{Q_{i}}} \ell_{v} .
$$

Furthermore, since $\hat{Q}=\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\} \subseteq X^{*}$ satisfies the knapsack constraint, we have
$\sum_{i \in[N]} \sum_{v \in V_{Q_{i}}} \ell_{v}=\sum_{v \in V_{\hat{Q}}} \ell_{v}=c\left(\left\{\hat{q}_{1}, \ldots, \hat{q}_{M}\right\}\right) \leq L$.
From the above inequalities, we obtain

$$
\begin{align*}
\sum_{j=1}^{M} c\left(\hat{q}_{j}\right) & =\sum_{i \in[N]} \sum_{q \in Q_{i}} \sum_{v \in V_{q}} \ell_{v} \tag{A4}\\
& \leq \lambda \sum_{i \in[N]} \sum_{v \in V_{Q_{i}}} \ell_{v} \leq \lambda L .
\end{align*}
$$

Combining (A2), (A3) and (A4), we obtain

$$
\begin{aligned}
& c\left(p_{i} \mid X_{i-1}\right)\left(f\left(X^{*}\right)-f\left(X_{i-1}\right)\right) \\
& \leq f\left(p_{i} \mid X_{i-1}\right) \lambda L .
\end{aligned}
$$

The claim follows by rearranging terms and using $f\left(p_{i} \mid X_{i-1}\right)=f\left(X_{i}\right)-f\left(X_{i-1}\right)$.

Lemma 3. For $i=1, \ldots, d+1$, we have

$$
\begin{aligned}
& f\left(X_{i}\right) \\
& \geq\left(1-\prod_{k=1}^{i}\left(1-\frac{c\left(p_{k} \mid X_{k-1}\right)}{\lambda L}\right)\right) f\left(X^{*}\right) .
\end{aligned}
$$

Proof. We prove the lemma by induction on $i=$ $1, \ldots, d+1$. First, if $i=1$, we have $X_{1}=\left\{p_{1}\right\}$ and thus the claim follows by Lemma 2. Then we assume the lemma holds for X_{1}, \ldots, X_{i-1} and prove that it holds for X_{i}. Combining Lemma 2 and the assumption, we obtain

$$
\begin{aligned}
& f\left(X_{i}\right) \\
& =f\left(X_{i-1}\right)+\left(f\left(X_{i}\right)-f\left(X_{i-1}\right)\right) \\
& \geq f\left(X_{i-1}\right)+\frac{c\left(p_{i} \mid X_{i-1}\right)}{\lambda L}\left(f\left(X^{*}\right)-f\left(X_{i-1}\right)\right) \\
& =\left(1-\frac{c\left(p_{i} \mid X_{i-1}\right)}{\lambda L}\right) f\left(X_{i-1}\right) \\
& \quad+\frac{c\left(p_{i} \mid X_{i-1}\right)}{\lambda L} f\left(X^{*}\right) \\
& \geq\left(1-\prod_{k=1}^{i}\left(1-\frac{c\left(p_{k} \mid X_{k-1}\right)}{\lambda L}\right)\right) f\left(X^{*}\right) .
\end{aligned}
$$

Thus the lemma holds by induction.
Theorem 1. Algorithm 1 achieves at least $\frac{1}{2}(1-$ $\left.e^{-1 / \lambda}\right)$-approximation.
Proof. Since $\sum_{k=1}^{d+1} \frac{c\left(p_{k} \mid X_{k-1}\right)}{c\left(X_{d+1}\right)}=1$ holds, $\prod_{k=1}^{d+1}\left(1-\frac{1}{\lambda} \cdot \frac{c\left(p_{k} \mid X_{k-1}\right)}{c\left(X_{d+1}\right)}\right)$ attains its maximum
when we have $\frac{c\left(p_{1} \mid X_{0}\right)}{c\left(X_{d+1}\right)}=\cdots=\frac{c\left(p_{d+1} \mid X_{d}\right)}{c\left(X_{d+1}\right)}=\frac{1}{d+1}$. Namely, the following inequality holds:

$$
\begin{aligned}
& \prod_{k=1}^{d+1}\left(1-\frac{1}{\lambda} \cdot \frac{c\left(p_{k} \mid X_{k-1}\right)}{c\left(X_{d+1}\right)}\right) \\
& \leq\left(1-\frac{1}{\lambda} \cdot \frac{1}{d+1}\right)^{d+1}
\end{aligned}
$$

By using Lemma 3, the above inequality, and the fact that the knapsack constraint is violated by adding $(d+1)$-th element (i.e., $c\left(X_{d+1}\right)>L$), we obtain

$$
\begin{aligned}
& f\left(X_{d+1}\right) \\
& \geq\left(1-\prod_{k=1}^{d+1}\left(1-\frac{c\left(p_{k} \mid X_{k-1}\right)}{\lambda L}\right)\right) f\left(X^{*}\right) \\
& \geq\left(1-\prod_{k=1}^{d+1}\left(1-\frac{1}{\lambda} \cdot \frac{c\left(p_{k} \mid X_{k-1}\right)}{c\left(X_{d+1}\right)}\right)\right) f\left(X^{*}\right) \\
& \geq\left(1-\left(1-\frac{1}{\lambda} \cdot \frac{1}{d+1}\right)^{d+1}\right) f\left(X^{*}\right) \\
& \geq\left(1-\frac{1}{e^{1 / \lambda}}\right) f\left(X^{*}\right) .
\end{aligned}
$$

This leads to the following inequality:

$$
\begin{aligned}
f\left(X_{d+1}\right) & =f\left(X_{d}\right)+f\left(p_{d+1} \mid X_{d}\right) \\
& \geq\left(1-e^{-1 / \lambda}\right) f\left(X^{*}\right) .
\end{aligned}
$$

We note that the solution, X, obtained by Steps $1-8$ in Algorithm 1 satisfies $f(X) \geq f\left(X_{d}\right)$ and that \hat{p} chosen in Step 9 satisfies $f(\hat{p}) \geq f\left(p_{d+1} \mid X_{d}\right)$. Therefore, the output of Algorithm 1, which is defined as $Y:=\operatorname{argmax}_{X^{\prime} \in\{X, \hat{p}\}} f\left(X^{\prime}\right)$, satisfies $f(Y) \geq \frac{1}{2}\left(1-e^{-1 / \lambda}\right) f\left(X^{*}\right)$.

C ILP formulations

We present ILP formulations for the three objective functions described in Section 5. In the experiments, the ILP-based method obtained summaries by solving the following optimization problems.

Coverage Function

The ILP formulation with the coverage function can be written as follows:

$$
\begin{align*}
\underset{z, b}{\operatorname{maximize}} & \sum_{j=1}^{M} w_{j} z_{j} \tag{A5}\\
\text { subject to } & \sum_{v \in V} \ell_{v} b_{v} \leq L, \tag{A6}\\
\forall v \in V \backslash r_{1: N}: & b_{\text {parent }(v) \geq b_{v}}, \tag{A7}\\
\forall j \in[M]: & \sum_{v \in V_{j}} b_{v} \geq z_{j}, \tag{A8}\\
\forall v \in V: & b_{v} \in\{0,1\} \\
\forall j \in[M]: & z_{j} \in\{0,1\}
\end{align*}
$$

z_{j} is a binary decision variable that indicates whether the j-th word is contained in the summary or not. b_{v} is a binary decision variable that represents whether chunk $v \in V$ is contained in the summary or not.

Constraint (A6) guarantees that the obtained summary includes at most L words. Remember that $r_{i} \in V(i \in[N])$ is the root node of dependency tree T_{i} constructed for the i-th sentence; we use $r_{1: N}$ as shorthand for $\left\{r_{1}, \ldots, r_{N}\right\}$. Function parent (v) returns the parent chunk of $v \in V$ in the dependency trees. Therefore, constraint (A7) guarantees that the obtained summary comprises some rooted subtrees of the dependency trees. $V_{j} \subseteq V$ denotes the set of all chunks that include the j-th word. Thus, constraint (A8) means that at least one chunk including the j-th word must be chosen in order to cover the j-th word.

Coverage Function with Rewords

The ILP formulation for this objective function can be obtained by replacing the objective function in (A5) with

$$
\sum_{j=1}^{M} w_{j} z_{j}-\gamma\left(\sum_{v \in V} \ell_{v} b_{v}-\sum_{i=1}^{N} b_{r_{i}}\right)
$$

where γ is a hyper parameter that balances the total weight of covered chunks and the positive reword term.

ROUGE $_{1}$

As in (Hirao et al., 2017), compressive summarization with the ROUGE ${ }_{1}$ objective function can be
formulated as the following ILP:

$$
\begin{align*}
\underset{z, b}{\operatorname{maximize}} & \sum_{k=1}^{K} \sum_{j=1}^{M} z_{k, j} \\
\text { subject to } & \sum_{v \in V} \ell_{v} b_{v} \leq L, \\
\forall k \in[K], j \in[M]: & \mathrm{C}_{e_{j}}\left(R_{k}\right) \geq z_{k, j}, \text { (A9) } \tag{AY}\\
\forall k \in[K], j \in[M]: & \sum_{v \in V_{j}} b_{v} \geq z_{k, j},(\mathrm{~A} 10) \tag{A10}\\
\forall v \in V \backslash r_{1: N}: & b_{\text {parent }(v) \geq b_{v},} \\
\forall v \in V: & b_{v} \in\{0,1\}, \\
\forall k \in[K], j \in[M]: & z_{k, j} \in \mathbb{Z}_{\geq 0} .
\end{align*}
$$

We here suppose that the document data contains M distinct unigrams indexed with $j \in[M]$; e_{j} denotes the j-th unigram, and $V_{j} \subseteq V$ is the set of all chunks that include e_{j}. Each non-negative integer variable $z_{k, j}$ counts the number of times that e_{j} appears both in the k-th reference summary and in the summary to be output, which we denote by $S \subseteq V$. From constraints (A9), (A10), and $\sum_{v \in V_{j}} b_{v}=\mathrm{C}_{e_{j}}(S)$, we see that the objective function corresponds to the numerator of ROUGE (3) with $n=1$. The remaining parts are similar to those in the ILP formulation for the coverage function.

References

Tsutomu Hirao, Masaaki Nishino, and Masaaki Nagata. 2017. Oracle summaries of compressive summarization. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Association for Computational Linguistics, pages 275-280. https://doi.org/10.18653/v1/P17-2043.

Samir Khuller, Anna Moss, and Joseph S. Naor. 1999. The budgeted maximum coverage problem. Information Processing Letters 70(1):39-45. https://doi.org/10.1016/S0020-0190(99)00031-9.

Maxim Sviridenko. 2004. A note on maximizing a submodular set function subject to a knapsack constraint. Operations Research Letters 32(1):41-43. https://doi.org/10.1016/S0167-6377(03)00062-2.

