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A Span embedding features

We slightly modify the span embedder from Lee
et al. (2017) as follows. To compute the em-
beddings of spans xi:j in an utterance x =
(x0, . . . , xn−1), We first add boundary tokens
x−1 = <BOS> and xn = <EOS>. We then embed
each token xi as a vector ei, and then apply multi-
layered bidirectional LSTMs. Let hFi and hBi be
the ith forward and backward hidden states, and
let hi be their concatenation. The embedding of
span xi:j = (xi, . . . , xj−1) is then a concatenation
of the following vectors:

• Endpoint hidden states: hi and hj−1.

• Uniform average of hidden states:

huni =
1

j − i
(hi + · · ·+ hj−1). (1)

• The difference in hidden state after reading
the span in each direction (Cross and Huang,
2016; Stern et al., 2017): hFj−1 − hFi−1 and
hBi − hBj .

• The attention-weighted average of token em-
beddings (Lee et al., 2017; He et al., 2018):
we compute attention weights over the j − i
positions:

ak ∝ exp [w>a hk]. (2)

Then we average the token embeddings:

hatt =

j−1∑
k=i

akek. (3)

• Span length (Lee et al., 2017; He et al., 2018):
we bin the length into buckets [1, 2, 3, 4,
5–7, 8–15, 16–31, 32–63, 64+] and use a
20-dimension embedding to represent each
bucket.

B Hyperparameters and training details

Tokens appearing less than 2 times in training data
are converted into UNK tokens. We also perform
word dropout with probability proportional to the
frequency of the word in training data.

To compute the node scores fn and edge scores
fe, we apply 2-layer feedforward networks with
hidden sizes of 200 over the span embeddings. La-
bel embeddings in fe are 150 dimensional. The
parameters are trained using Adam (Kingma and
Ba, 2015) with the initial learning rate of 5×10−4

and early stopping. We apply dropout with prob-
ability 0.2 before each LSTM and feedforward
layer.
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