# Supplementary Materials of Frustratingly Easy Model Ensemble for Abstractive Summarization 

Hayato Kobayashi<br>Yahoo Japan Corporation / RIKEN AIP<br>hakobaya@yahoo-corp.jp

## A Proof of Theorem 1

Proof. First, we will prove the following equation.

$$
\begin{equation*}
\tilde{p}(y)=\max _{s \in S} \tilde{p}(s), \tag{1}
\end{equation*}
$$

where $S$ and $y$ are the output candidates and the selected output, respectively, in Algorithm 1 with $K\left(s, s^{\prime}\right)=\cos \left(s, s^{\prime}\right)$, and $\tilde{p}$ is the first order Taylor series approximation of the kernel density estimator $p$ based on the von Mises-Fisher kernel.
From the definition of the von Mises-Fisher kernel, we have

$$
\begin{align*}
p(s) & =\frac{1}{|S|} \sum_{s^{\prime} \in S} K_{\mathrm{vmf}}\left(s, s^{\prime}\right)  \tag{2}\\
& =\frac{1}{|S|} \sum_{s^{\prime} \in S} C_{q}(\kappa) \exp \left(\kappa \cos \left(s, s^{\prime}\right)\right)  \tag{3}\\
& \propto \sum_{s^{\prime} \in S} \exp \left(\kappa \cos \left(s, s^{\prime}\right)\right) \tag{4}
\end{align*}
$$

where $C_{q}(\kappa)$ and $\kappa$ are the normalization constant and concentration parameter of the von MisesFisher kernel. Using the first order Taylor series approximation at 0 of $\exp (x)$, i.e., $\exp (x) \approx 1+x$, we have $\tilde{p}(s) \propto \sum_{s^{\prime} \in S}\left(1+\kappa \cos \left(s, s^{\prime}\right)\right)$. Therefore, the definition of $y$ yields

$$
\begin{align*}
y & =\frac{1}{|S|} \underset{s \in S}{\operatorname{argmax}} \sum_{s^{\prime} \in S} \cos \left(s, s^{\prime}\right)  \tag{5}\\
& =\underset{s \in S}{\operatorname{argmax}} \sum_{s^{\prime} \in S} 1+\kappa \cos \left(s, s^{\prime}\right)  \tag{6}\\
& =\underset{s \in S}{\operatorname{argmax}} \tilde{p}(s) . \tag{7}
\end{align*}
$$

This proves Eq. (1).
Next, we consider the following equation.

$$
\begin{equation*}
p\left(y^{*}\right)-p(y) \leq C_{q}(\kappa) \kappa^{2} \exp (\kappa)\left(\sigma^{2}+\mu^{2}\right), \tag{8}
\end{equation*}
$$

where $y^{*}$ is the ideal output that maximizes the von Mises-Fisher kernel, i.e., $y^{*}=$ $\operatorname{argmax}_{s \in S} p(s)$, and $\mu$ and $\sigma^{2}$ are the maximum values of the mean and variance of the cosine similarities $\cos \left(s, s^{\prime}\right)$ with respect to an output candi-
date $s$, defined as

$$
\begin{align*}
\mu & =\max _{s \in S} \mathbb{E}_{s^{\prime}}\left[\cos \left(s, s^{\prime}\right)\right]  \tag{9}\\
\sigma^{2} & =\max _{s \in S} \mathbb{V}_{s^{\prime}}\left[\cos \left(s, s^{\prime}\right)\right] . \tag{10}
\end{align*}
$$

The Lagrange error bound $R_{n}(x)$ of the $n$-th Taylor series approximation of $f(x)$ is defined as

$$
\begin{equation*}
R_{n}(x)=\frac{\max _{x^{\prime}} f^{(n+1)}\left(x^{\prime}\right)}{(n+1)!} x^{n+1} \tag{11}
\end{equation*}
$$

In our case, the error bound $\tilde{R}(x)$ is calculated for the first order approximation of $\exp (x)$, where $x=\kappa \cos \left(s, s^{\prime}\right)$, and $-\kappa \leq x \leq \kappa$, and thus, we obtain the upper bound as

$$
\begin{align*}
\tilde{R}(x) & =\frac{\max _{x^{\prime}} \exp \left(x^{\prime}\right)}{2!} x^{2}  \tag{12}\\
& \leq \frac{\exp (\kappa)}{2} x^{2} \tag{13}
\end{align*}
$$

Here, we define the approximation error between $p(s)$ and $\tilde{p}(s)$ with respect to an output $s$ as $R^{\prime}(s)$. This error can be bounded as follows.

$$
\begin{align*}
R^{\prime}(s) & =|p(s)-\tilde{p}(s)|  \tag{14}\\
& \leq \frac{1}{|S|} \sum_{s^{\prime} \in S} C_{q}(\kappa) \tilde{R}\left(\kappa \cos \left(s, s^{\prime}\right)\right)  \tag{15}\\
& \leq \frac{1}{|S|} \sum_{s^{\prime} \in S} C_{q}(\kappa) \frac{\exp (\kappa)}{2}\left(\kappa \cos \left(s, s^{\prime}\right)\right)^{2}  \tag{16}\\
& =C_{q}(\kappa) \frac{\kappa^{2} \exp (\kappa)}{2} \frac{1}{|S|} \sum_{s^{\prime} \in S} \cos ^{2}\left(s, s^{\prime}\right) \tag{17}
\end{align*}
$$

$$
\begin{equation*}
=C_{q}(\kappa) \frac{\kappa^{2} \exp (\kappa)}{2}\left(\sigma_{s}^{2}+\mu_{s}^{2}\right), \tag{18}
\end{equation*}
$$

where $\mu_{s}=\frac{1}{|s|} \sum_{s^{\prime} \in S} \cos \left(s, s^{\prime}\right)$, and $\sigma_{s}^{2}=$ $\frac{1}{|S|} \sum_{s^{\prime} \in S} \cos ^{2}\left(s, s^{\prime}\right)-\mu_{s}^{2}$.

From the approximation error of $\tilde{p}\left(y^{*}\right)$, we obtain the following.

$$
\begin{equation*}
p\left(y^{*}\right)-R^{\prime}\left(y^{*}\right) \leq \tilde{p}\left(y^{*}\right) \tag{19}
\end{equation*}
$$

Similarly, from the approximation error of $\tilde{p}(y)$, we obtain the following.

$$
\begin{equation*}
\tilde{p}(y) \leq p(y)+R^{\prime}(y) \tag{20}
\end{equation*}
$$

Using the optimality of $y$ with respect to $\tilde{p}$, i.e., $\tilde{p}\left(y^{*}\right) \leq \tilde{p}(y)$, we can connect the above two inequalities as

$$
\begin{align*}
p\left(y^{*}\right)-p(y) & \leq R^{\prime}\left(y^{*}\right)+R^{\prime}(y)  \tag{21}\\
& \leq 2 \max _{s \in S} R^{\prime}(s)  \tag{22}\\
& =C_{q}(\kappa) \kappa^{2} \exp (\kappa) \max _{s \in S}\left(\sigma_{s}^{2}+\mu_{s}^{2}\right) \tag{23}
\end{align*}
$$

This concludes the theorem.

