
A Supplementary Material

A.1 Edge case handling: overlapping
arguments

Occasionally, a word may be part of multiple argu-
ments of the same connective (e.g., both the Cause
and the Effect). For example, in This equipment is
newer and thus safer, the Cause and Effect of thus
would respectively be annotated as this equipment
is newer and this equipment is safer. When pro-
cessing such a shared word, the DeepCx algorithm
issues an arc transition that includes both argument
names (e.g., LEFT-ARCCause,Means). From the tag-
ger’s standpoint, this is an entirely separate transi-
tion from, say, LEFT-ARCCause or LEFT-ARCMeans.

When executing an action with multiple argu-
ment types, a separate arc is added to A for each
argument type—i.e., the word is added to both ar-
gument spans.

A.2 Parser details
The LSTM parser assumes its input has already
been split into sentences and POS-tagged. These
preprocessing steps are performed using Stanford
CoreNLP (Manning et al., 2014).

A.3 Constraints on transition ordering
As mentioned in §4, several transitions have con-
straints on their ordering to ensure semantic well-
formedness. The following constraints apply:

• A CONN-FRAG may not immediately follow a
SPLIT or another CONN-FRAG.

• A SPLIT may not immediately follow a CONN-
FRAG or another SPLIT.

• A SPLIT is permitted only if the connective
currently under construction has at least one
fragment—i.e., it contains at least two words.

• NO-CONN is forbidden if s is true, i.e., if a has
been determined to be a connective anchor.

These are enforced at each timestep, both at train-
ing and test time, by eliminating violating transi-
tions from the tagger’s set of available next actions.

A.4 Neural network details and training
parameters

Each LSTM is initialized with its own default item
whose values are trained parameters.

We followed the training parameters of Dyer
et al. (2015): we used gradient descent for param-
eter optimization, with an initial learning rate of

η0 = 0.1 and updates of ηt = η0/(1 + 0.8t) after
each epoch t; we clipped the `2 norm of the gra-
dients to 5; and we applied an `2 penalty of 10−6

to all weights. We also used Glorot initialization
(Glorot and Bengio, 2010) for all parameters. Each
fold took about 40 minutes to train on a single core
of a 3.10-GHz processor.


