
Here we give the proofs of Theorem 1 and other necessary lemmas or corol-
laries.

Lemma 1 (Reachability) Any two trees y, y′ are reachable to each other.
Specifically, let m1,m2, · · · ,mn be the bottom-up list of nodes in tree y, then
there exists a path y = y(0) → y(1) → · · · → y(n) = y′, in which y(i) is obtained
by changing the head of mi, i.e. y(i)(mi) = y′(mi), and this change always
results in a valid tree (which has no circle).

Proof: We show y(i) is always a valid tree and therefore y(i) ∈ T (y(i−1),mi),
because y(i) and y(i−1) differs at most at the head of mi (y(i−1)(mi) = y(mi)
but y(i)(mi) = y′(mi)). Proof by induction on i = 1, · · · , n.

• i=1: m1 must be leaf node in y because m1, · · · ,mn is a bottom-up
(reverse DFS) order. Changing its head to any node cannot results in
a circle. Therefore y(i) is a tree when i = 1.

• i>1: Now let’s change the head of mi in tree y(i−1). Consider the
subtree with root mi in y(i−1). We now prove that any node x inside
this subtree is already processed and its head is already changed, i.e.,
x ∈ {m1, · · · ,mi−1} and y(i−1)(x) = y′(x). This can be shown by
contradiction. Assume a node x inside this subtree is not processed,
and its head h has not been changed yet, i.e., y(x) = y(i−1)(x) = h.
This implies the node h has not been processed neither, because all
nodes are processed in bottom-up order. Repeat the same idea and we
know that x, y(x), y(y(x)), · · · , y(y(..y(x)..)) = mi are not processed.
This contradicts to the fact that mi is the next immediate unprocessed
node in the bottom-up list, because its descendants are not processed.

So all nodes in the subtree are processed and all arcs appear in the
subtree are already arcs in y′. Changing the head of mi cannot results
in a circle (i.e., the new head of mi, y

′(mi) can not be a node inside
this subtree, otherwise it implies there is a circle in tree y′, which is
not possible). Thus y(i) is a valid tree.

Finally y(n) = y′ because y(n)(x) = y′(x) for all node x. In sum, y′ is
accessible via the path y = y(0) → · · · → y(n) = y′.

1

Function CountOptima(G = 〈V,E〉)
V = {w0, w1, · · · , wn} are the root (w0) and n words
E = {eij ∈ R} are the arc scores

Return: the number of local optima

1: Let y(0) = ∅ and y(i) = arg maxj eji;
2: if y is a tree (no circle) then return 1;
3: Find a circle C ⊂ V in y;
4: cnt = 0;

// contract the circle
5: create a vertex w∗;
6: ∀j /∈ C : e∗j = maxk∈C ekj;
7: for each vertex wi ∈ C do
8: ∀j /∈ C : ej∗ = eji;
9: V ′ = V ∪ {w∗} \ C;
10: E ′ = E ∪ {e∗j, ej∗ | ∀j /∈ C}
11: cnt += CountOptima(G′ = 〈V ′, E ′〉);
12: end for
13: return cnt;

Figure 1: A recursive algorithm for counting local optima for a sentence with
words w1, · · · , wn in first-order case. The idea is very similar to the Chu-Liu-
Edmond algorithm for finding only the maximum directed spanning tree.

To prove Theorem 1, we start by proving the correctness of the recursive
algorithm for counting local optima:

Definitions Let G = 〈V,E〉 be a directed weighted graph of size n + 1,
where vertices V = {w0, · · · , wn} represent a pseudo root node wo and n
words w1, · · · , wn in a sentence, and weights E = {eij ∈ R} represent the
first-order scores associated with individual arcs i → j. A local optimum
tree in G is a directed tree with root w0, such that changing any single head
cannot result in a better tree with higher score.1

Lemma 2 Let y(0) = ∅ and y(i) be the index of the best possible head for

1We assume there is no tie when comparing scores, trees or heads. If there is a tie, we
can always break it by taking the tree (or head) that ranks higher in terms of aphabetic
order.

2

word wi, i.e., y(i) = arg maxj eji. Then: (a) y is the unique local optimum
in G if y is a tree; (b) otherwise let C be a circle in y, then any local optimum
tree ỹ ∈ G contains exactly |C| − 1 arcs in the circle C.

Proof: (a) Simply by the definition of y.

(b) Proof by contradiction. Assume ỹ ∈ G is a local optimum tree that
contains less than |C| − 1 arcs in the circle C. Consider a top-down order of
nodes in ỹ, and let u ∈ C be the first node (in the circle) in this top-down
list. Now define ŷ as follows,

ŷ(x) =

{
ỹ(x) x /∈ C or x = u
y(x) x ∈ C and x 6= u

It’s easy to verify that ŷ is a tree. Note that ŷ has exactly |C| − 1 arcs of
the circle C. By Lemma 1, there is a path from ỹ to ŷ that never decreases
the tree score, because the heads of ŷ is strictly better than those of ỹ, i.e.,
eŷ(x)x ≥ eỹ(x)x. This contradicts to the assumption that ỹ is a local optimum
tree.

Now according to Lemma 2, one way to get the local optimum trees in G is as
follows: (1) enumerate and pick a node u ∈ C; (2) remove the arc y(u)→ u
in the circle C and it becomes a chain; (3) fix these heads and arcs in the
chain; (4) contract this chain and search for local optima in a smaller graph
by applying Lemma 1 repeatedly:

Definitions Let G, y and C be a graph, the set of best heads and the circle
in y respectively. Without loss of generality, let w1, · · · , wc be the nodes in
the circle C, where c = |C|. Define graph G(i) =

〈
V (i), E(i)

〉
(i = 1, · · · , c) as

the contraction of graph G at wi ∈ C as follows:

V (i) = V ∪ {w(i)
∗ } \ C

E(i) = {e′jk}
where

e′j∗ = eji, ∀j ∈ V \ C
e′∗j = max

k∈C
ekj ∀j ∈ V \ C

e′jk = ejk ∀j, k ∈ V \ C

3

Lemma 3 Any local optimum tree ỹ ∈ G(i) is also a local optium tree in G
(by uncontracting the node w∗ back to the chain); and vice versa, i.e., any
local optimum tree ỹ ∈ G is also a local optimum tree in one of G(i) for
i = 1, · · · , c.

Proof: By Lemma 2 and the definitions of G(i) and y. Details omitted
here.

Corollary 1 Let F (G) be the number of local optimum tree in graph G: (a)
F (G) = 1 if y is a tree that has no circle; (b) F (G) =

∑
i F (G(i)) if y contains

a circle C.

Proof: By Lemma 2 and Lemma 3.

Corollary 2 The recursive algorithm in Figure 1 returns the number of local
optima in graph G. Its complexity is linear to the number of local optima.

Proof: By Lemma 2, Lemma 3 and Corollary 1.

Theorem 1 (Local Optima Bound) For any first-order score function that
factorizes into the sum of arc scores S(x, y) =

∑
Sarc(y(m),m): (a) the num-

ber of local optimum trees is at most 2n−1 for n words; (b) this upper bound
is tight.

Proof: (a) Let F̂ (m) be the maximum number of local optimum trees in
any graph of size m. By Corollary 1, we have:

F̂ (2) = 1

F̂ (m) ≤ max
2≤c≤m−1

F̂ (m− c + 1)× c ∀m > 2

Solving this we get F̂ (m) ≤ 2m−2. For a sentence with n words, the corre-
sponding graph has size m = n + 1, therefore the upper bound is 2n−1.

4

(b) For any n > 0, construct a graph Gn = 〈V,E〉 as follows:

V = {w0, w1, · · · , wn}
E = {eij}

where

eij = eji = i ∀0 ≤ i < j ≤ n

Note that wn−1 → wn → wn−1 is a circle of length 2 in Gn and y. Then it can
be shown by induction on n and Corollary 1 that F (Gn) = F (Gn−1) × 2 =
2n−1.

5

