
Supplementary Material for EPIC

David Hall and Dan Klein
Computer Science Division

University of California, Berkeley
{dlwh,klein}@cs.berkeley.edu

1 Specifics on the Parsing Models

Here we present some more detail on our in-
dividual parsing models, specifically going over
the features we use. As with most parsers or
other complex natural language processing systems,
the overall system is hard to completely describe
in text, and so we are releasing our parser at
http://nlp.cs.berkeley.edu/Software.shtml.

All of the features we use are indicator features.
We use Collins head rules to determine heads for the
lexicalized parser and for binarization. We describe
our lexicon in section 1.4.

1.1 Lexicalized Model

Recall that we have binary rules of the formA[h]→
B[h]C[d] and A[h] → B[d]C[h]. The feature
function ϕ for this model starts with several indi-
cator features:

1. I[A→ BC]

2. I[A→ BC,HEAD = wsi(wh)]

3. I[A→ BC,HEAD = tag(wh)]

4. I[A→ BC,DEP = wsi(wd)]

5. I[A→ BC,DEP = tag(wd)]

6. I[HEAD = tag(wh),DEP = wsi(wd)]

7. I[HEAD = tag(wh),DEP = tag(wd)]

8. I[HEAD = wsi(wh),DEP = wsi(wd)]

9. I[HEAD = wsi(wh),DEP = tag(wd)]

10. I[DIST=binDistance(h, d), ∗]

where tag maps each words to its most common tag
and wsi is the i’th word shape feature. (See sec-
tion 1.4 of this note.) binDistance is a function that
bins words into 1 of 4 bins, based on their surface
distance, and the ∗ is meant to mean that we use
all the previous features with their binned variants.
These features make our parser a combination de-
pendency/monolexicalized parser.

This is not quite a complete description of our fea-
tures, as these templates would produce quite a large
number of features. Instead, we produce these fea-
tures only for rules that occur in the treebank. For
other “bad” features, we randomly hash their respec-
tive features to a number of buckets. We found that
as long as there were a sufficient number of buckets
(a few thousand), performance was not appreciably
different. We used one fifth the number of features
found in the treebank as the number of bad feature
buckets.

1.2 Unlexicalized model

Our unlexicalized parser just implements the model
of Klein and Manning (2003) and uses straightfor-
ward rule indicator features for annotated rules. We
experimented with slightly different annotations and
adding more featurization, but this seemed to work
about as well as the other slight variants we tried.

1.3 Latent variable model

Our latent variable model is similarly straightfor-
ward, using just indicators on annotated rules. We
tried using other features that ignored some or all of
the latent annotation, but they seemed to hurt. To
break symmetries, we added random noise in the
range [0, 0.001] to all parameters.



1.4 Lexicon and unknown word features
Our lexicon is consistent across all models. It is sim-
ilar to that used by Petrov and Klein (2008), relying
primarily on word shape features, but we break fea-
tures into smaller “pieces” than their parser.

The function ws(w) returns a list of word shape
features, including:

1. w if w occurs more than 3 times. And if the
word occurs fewer than 5 times the following:

2. HasX if w has X, where X is a capital letter,
many capital letters, digits, non-digits, lower
case letters, a dash, initial capitalization, no
lower case letters, a non-letter, or no letters at
all.

3. A concatentation of many of the previous fea-
tures.

4. A feature that collapses repeated character
classes into a word shape feature. For exam-
ple, “300-odd” becomes “dd+-xx+”.

5. LongWord if length(w) < 10.

6. ShortWord if length(w) < 5.

7. Suffixes and prefixes of lengths 1, 2, and 3.

For the lexicalized parser, we only use 1, 3, and
4 as appropriate for rule features. The lexicon had
access to all features.

2 Unaries

The correct handling of unaries is a frequent chal-
lenge in the design of a parser. We adopt a simple
two-layer transformation to trees that makes han-
dling them much simpler Specifically, every tree
consists of alternating layers of binary and unary
productions. The children of every binary produc-
tion rewrite as unaries (usually this is an identity
rewrite), and the child of every unary rewrites as
either a binary rule or a part-of-speech tag. When
parsing, for each unary production A→ B the most
likely unary path for that production is replaced. We
do this based on unannotated trees.

This approach makes sense for the anchored rule
architecture we use for EP, since we do not need
to worry about infinite unary chains. Finally, this

choice also makes the MaxRecall algorithm (Good-
man, 1996) simpler to use in practice, since the deci-
sion of how many unary rules to include is avoided.

3 Projecting to an Anchored Grammar

In this section, we discuss how to project the parse
forest for an annotated grammar to an unannotated
anchored grammar. This section largely derives
from Matsuzaki et al. (2005)’s grammar used for
decoding, but we include it here for completeness.
Given a set of inside and outside scores over anno-
tated labels I(A[x], s, t) and O(A[x], s, t) we can
compute anchored PCFG probabilities as in Figure
1. Basically, we just marginalize over annotations,
and normalize so that

∑
B,C,u p(sAt → sBuuCt) =

1.

References
Joshua Goodman. 1996. Parsing algorithms and metrics.

In ACL, pages 177–183.
Dan Klein and Christopher D. Manning. 2003. Accurate

unlexicalized parsing. In ACL, pages 423–430.
Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii.

2005. Probabilistic CFG with latent annotations. In
Proceedings of the 43rd Annual Meeting on Associ-
ation for Computational Linguistics, ACL ’05, pages
75–82, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Slav Petrov and Dan Klein. 2008. Discriminative log-
linear grammars with latent variables. In J.C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems 20 (NIPS),
pages 1153–1160, Cambridge, MA. MIT Press.



p(sAt → sBuuCt) =

∑
xyz O(A[x], s, t)score(A[x]→ B[y]C[z],w, s, t, u)I(B[y], s, u)I(C[z], u, t)∑

xO(A[x], s, t)I(A[x], s, t)

p(sAt → sBt) =

∑
xy O(A[x], s, t)scoreu(A→ B,w, s, t)I(B[y], s, t)∑

xO(A[x], s, t)I(A[x], s, t)

p(sAs+1 → ws) = 1

score(A[x]→ B[y]C[z],w, s, t, u) = exp
(
θTmϕ(A[x]→ B[y]C[z],w) + q(A→ BC, s, u, t)

)
scoreu(A[x]→ B[y],w, s, t, u) = exp

(
θTmϕ(A[x]→ B[y],w) + q(A→ B, s, t)

)
Figure 1: Estimating an anchored grammar for a sentence w from the inside and outside scores of an anchored gram-
mar. Note that we use alternating layers of unaries and binaries.

Models
Lat. Bits φ Lexicalized Unlexicalized Lex+Unlex

0 ——– 87.3/86.5 86.3/85.4 90.2/89.5
1 81.6/80.6 89.7/89.0 88.1/87.2 90.2/89.5
2 84.6/83.9 89.8/89.2 88.6/87.8 90.1/89.6
3 87.6/86.1 90.0/89.4 88.7/88.0 90.2/89.7
4 88.5/87.6 89.8/89.2 88.8/88.1 90.0/89.3
5 89.2/88.4 89.9/89.2 88.4/87.7 90.1/89.4
6 89.7/88.9 90.1/89.5 88.5/87.7 90.0/89.3

Table 1: Extra development set results. The values reported here are Section 22 Len 40/All of Section 22. The numbers
on the left hand side are the number of factored latent bit annotations used in conjunction with the model above. The
φ column uses only latent information.


